Rare Earth and Critical Elements in Ore Deposits
This special volume provides a comprehensive review of the current state of knowledge for rare earth and critical elements in ore deposits. The first six chapters are devoted to rare earth elements (REEs) because of the unprecedented interest in these elements during the past several years. The following eight chapters describe critical elements in a number of important ore deposit types. These chapters include a description of the deposit type, major deposits, critical element mineralogy and geochemistry, processes controlling ore-grade enrichment, and exploration guides. This volume represents an important contribution to our understanding of where, how, and why individual critical elements occur and should be of use to both geoscientists and public policy analysts.
The term “critical minerals” was coined in a 2008 National Research Council report (National Research Council, 2008). Although the NRC report used the term “critical minerals,” its focus was primarily on individual chemical elements. The two factors used in the NRC report to rank criticality were (1) the degree to which a commodity is essential, and (2) the risk of supply disruption for the commodity. Technological advancements and changes in lifestyles have changed the criticality of elements; many that had few historic uses are now essential for our current lifestyles, green technologies, and military applications. The concept of element criticality is useful for evaluation of the fragility of commodity markets. This fragility is commonly due to a potential risk of supply disruption, which may be difficult to quantify because it can be affected by political, economic, geologic, geographic, and environmental variables.
Identifying potential sources for some of the elements deemed critical can be challenging. Because many of these elements have had minor historic usage, exploration for them has been limited. Thus, as this volume highlights, the understanding of the occurrence and genesis of critical elements in various ore deposit models is much less well defined than for base and precious metals. A better understanding of the geologic and geochemical processes that lead to ore-grade enrichment of critical elements will aid in determining supply risk and was a driving factor for preparation of this volume. Understanding the gaps in our knowledge of the geology and geochemistry of critical elements should help focus future research priorities.
Critical elements may be recovered either as primary commodities or as by-products from mining of other commodities. For example, nearly 90% of world production of niobium (Nb) is from the Araxá niobium mine (Brazil), whereas gallium (Ga) is recovered primarily as a by-product commodity of bauxite mining or as a by-product of zinc processing from a number of sources worldwide.
Rare Metal Deposits Associated with Alkaline/Peralkaline Igneous Rocks
-
Published:January 01, 2016
Abstract
Highly evolved alkaline/peralkaline igneous rocks host deposits of rare earth elements (REE), including Y as well as Zr, Hf, Nb, Ta, U, and Th. The host rocks spanning from silica-undersaturated (nepheline syenites) to silica-oversaturated (granites) occur in intraplate tectonic environments, mainly in continental settings and are typically associated with rifting, faulting, and/or crustal extension. They range in age from Neoarchean/Paleoproterozoic to Mesozoic, but several significant deposits are of Mesoproterozoic age. The deposits/prospects can be subdivided into three types. The first is hosted by nepheline syenitic rocks of large, layered alkaline intrusions where the mineralization commonly occurs in layers rich in REE-bearing minerals, which mostly show cumulate textures (e.g., Thor Lake/Nechalacho, Canada; Ilimaussaq, Greenland; Lovozero, Russia; Kipawa, Canada; Norra Kärr, Sweden; Pilanesberg, South Africa). The second type includes mineralization in peralkaline granitic rocks where REE-bearing minerals are usually disseminated. The mineralization is typically hosted by pegmatites (including the Nb-Y-F type), felsic dikes, and minor granitic intrusions (e.g., Strange Lake, Canada; Khaldzan-Buregtey, Mongolia; Ghurayyah, Saudi Arabia; Bokan, Alaska, United States). The third type is disseminated, very fine grained, and hosted by peralkaline felsic volcanic/volcaniclastic rocks, mostly of trachytic composition (e.g., Dubbo Zirconia and Brockman/Hastings, Australia).
The bulk of the REE is present in ore/accessory minerals which in some mineralized zones, particularly in cumulate rocks from alkaline complexes, can reach >10 vol %. Mineralization is composed of a variety of REE-bearing minerals, which frequently show complex replacement textures. They include fluorocarbonates, phosphates, silicates, and oxides. Economically most important are bastnäsite, monazite, xenotime, loparite, eudialyte, synchysite, and parasite. Many other minerals are either sparse or it is difficult with present technology to profitably extract REE from them on a commercial scale. Compared to carbonatite-hosted REE deposits, the REE mineralization in alkaline/peralkaline complexes has lower light REE concentrations but has commonly higher contents of heavy REE and Y and shows a relative depletion of Eu. Elevated concentrations of U and Th in the ore assemblages make gamma-ray (radiometric) surveys an important exploration tool.
The host peralkaline (granitic, trachytic, and nepheline syenitic) magmas undergo extensive fractional crystallization, which is protracted in part due to high contents of halogens and alkalis. The REE mineralization in these rocks is related to late stages of magma evolution and typically records two mineralization periods. The first mineralization period produces the primary magmatic ore assemblages, which are associated with the crystallization of fractionated peralkaline magma rich in rare metals. This assemblage is commonly overprinted during the second mineralization period by the late magmatic to hydrothermal fluids, which remobilize and enrich the original ore. The parent magmas are derived from a metasomatically enriched mantle-related lithospheric source by very low degrees of partial melting triggered probably by uplift (adiabatic) or mantle plume activity. The rare metal deposits/mineralization related to peralkaline igneous rocks represent one of the most economically important resources of heavy REE including Y. In addition to REE, some of these deposits contain economically valuable concentrations of other rare metals including Zr, Nb, Ta, Hf, Be, U, and Th, as well as phosphates.
- Africa
- Alaska
- alkali granites
- alkalic composition
- Arabian Peninsula
- Arctic region
- Asia
- Canada
- Commonwealth of Independent States
- Europe
- Far East
- feldspathoid rocks
- granites
- Greenland
- hafnium
- igneous rocks
- Ilimaussaq
- Lovozero Massif
- mantle
- mantle plumes
- Mesoproterozoic
- Mesozoic
- metal ores
- metals
- mineral deposits, genesis
- Mongolia
- Murmansk Russian Federation
- nepheline syenite
- niobium ores
- Paleozoic
- partial melting
- peralkalic composition
- plutonic rocks
- Precambrian
- Proterozoic
- rare earth deposits
- rare earths
- Russian Federation
- Saudi Arabia
- South Africa
- Southern Africa
- syenites
- tantalum ores
- thorium ores
- trachytes
- United States
- upper Precambrian
- uranium ores
- volcanic rocks
- zirconium ores
- Strange Lake Deposit
- Thor Lake Deposit
- Khaldzan-Buregtey Deposit
- Kipawa Deposit
- Ghurayyah Deposit
- Nechalacho Deposit
- Norra Karr Deposit
- Bokan Deposit
- Pilanesberg Deposit