The Kabanga Ni Sulfide Deposits, Tanzania: A Review of Ore-Forming Processes
-
Published:January 01, 2011
Abstract
The Kabanga Ni sulfide deposit represents one of the most significant Ni sulfide discoveries of the last two decades, with current measured and indicated mineral resources of 37.2 million metric tons (Mt) at 2.63 percent Ni and inferred mineral resources of 21 Mt at 2.6 percent Ni (Dec. 2010, Xstrata.com). The sulfides occur in sill-like and chonolithic ultramafic-mafic intrusions that form part of the approximately 500-km long, 1.4-Ga Kabanga-Musongati-Kapalagulu mafic-ultramafic igneous belt, within the Karagwe-Ankole belt in northwestern Tanzania and adjacent Burundi. The intrusions are up to ∼1 km thick and 4 km long and crystallized from several pulses...
Figures & Tables
Contents
Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry, and Genesis

Magmatic sulfide deposits fall into two major groups when considered on the basis of the value of their contained metals, one group in which Ni, and, to a lesser extent, Cu, are the most valuable products and a second in which the PGE are the most important. The first group includes komatiite- (both Archean and Paleoproterozoic), flood basalt-, ferropicrite-, and anorthosite complex-related deposits, a miscellaneous group related to high Mg basalts, Sudbury, which is the only example related to a meteorite impact melt, and a group of hitherto uneconomic deposits related to Ural-Alaskan–type intrusions. PGE deposits are mostly related to large intrusions comprising both an early MgO- and SiO2-rich magma and a later Al2O3-rich, tholeiitic magma, although several other intrusive types contain PGE in lesser, mostly uneconomic quantities. Most Ni-rich deposits occur in rocks ranging from the Late Archean to the Mesozoic. PGE deposits tend to predominate in Late Archean to Paleoproterozoic intrusions, although the limited number of occurrences casts doubt on the statistical validity of this observation.
A number of key events mark the development of a magmatic sulfide deposit, partial melting of the mantle, ascent into the crust, development of sulfide immisciblity as a result of crustal interaction, ascent of magma + sulfides to higher crustal levels, concentration of the sulfides, their enrichment through interaction with fresh magma (not always the case), cooling and crystallization. Factors governing this development include (1) the solubility of sulfur in silicate melts and how this varies as a function of partial mantle melting and subsequent fractional crystallization, (2) the partitioning of chalcophile metals between sulfide and silicate liquids, and how the results of this vary during mantle melting and subsequent crystallization and sulfide immiscibility (degree of melting and crystallization, R factor and subsequent enrichment), (3) how effectively the sulfides become concentrated and the factors controlling this, and (4) processes that occur during the cooling of the sulfide liquid that govern aspects of exploration and mineral beneficiation. These topics are discussed first in general terms and then with specific reference to deposits at Noril’sk, Kambalda, and Voisey's Bay. With regard to Voisey's Bay, quantitative modeling is consistent with the very low PGE concentrations in this deposit being the result of some sulfide having been left behind in the mantle during partial melting. Both the Noril'sk and Voisey's Bay deposits are shown to be economic because of subsequent upgrading of the