Regional 18O Zoning and Hydrogen Isotope Studies in the Kidd Creek Volcanic Complex, Timmins, Ontario*
-
Published:January 01, 1999
-
CiteCitation
Bruce E. Taylor, David L. Huston, 1999. "Regional 18O Zoning and Hydrogen Isotope Studies in the Kidd Creek Volcanic Complex, Timmins, Ontario", The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada, Mark D. Hannington, C. Tucker Barrie
Download citation file:
- Share
-
Tools
Abstract
Isotopic studies covering some 200 km2 of the Kidd Creek Volcanic Complex, within about 10 km of the giant Kidd Creek deposit, include the analysis of 395 whole-rock and quartz phenocryst samples for oxygen isotopes and 87 whole-rock samples for hydrogen isotopes. All of the rocks of the Kidd Creek Vol canic Complex are enriched in 18O relative to fresh or even mildly altered equivalents elsewhere, comprising a range for whole rocks of δ18Owhole rock = 6.3 to 15.7 per mil. Mapped distribution of δ18O whole rock values indicates several prominent zones of...
Figures & Tables
Contents
The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada

ARCHEAN Cu-Zn deposits are among the most important mineral deposit types in Canada. The Superior province of Canada contains nearly 80 percent of the known Archean Cu-Zn deposits in the world (about 100 of 125 deposits). These deposits are concentrated in 10 separate mining camps, including Sturgeon Lake, Manitouwadge, Mattagami Lake, Chibougamau, Joutel, Val d’Or, Bous-quet, Noranda, Kidd Creek, and Kamiskotia (Fig. 1 and Table 1). A few deposits in rocks of similar age and composition are also known in the Slave province, the Churchill province, and in the Archean of Western Australia, southern Africa, China, and Brazil. Known deposits of this age worldwide account for more than 650 million metric tons (Mt) of massive sulfides, containing 10 Mt of Cu metal, 29 Mt of Zn, 1 Mt of Pb, 33 Mkg Ag, and 750,000 kg Au. The giant Kidd Creek volcanogenic massive sulfide deposit in the western Abitibi subprovince of Canada is the largest known deposit of this age currently in production. The Superior province is the world’s largest exposed Archean craton, occupying an area of more than 1.5 million km2, bounded by the Trans-Hudson orogen to the west and the Grenville province to the east. A number of distinct subprovinces are recognized, assembled into east-west-trending granite-greenstone terranes and metasedi-mentary belts (Fig. 1). The granite-greenstone terranes are composed of gneissic rocks of plutonic origin, supracrustal rocks of dominantly volcanic origin, and a variety of syn- to late kinematic granitoids. Volcanic rocks comprise about 12 percent of the total area. The greenstone belts have been described variously as successive lateral accretions of volcano-plutonic arcs, oceanic islands, oceanic plateaus, and rift-related assemblages (e.g., Langford and Morin, 1976; Percival and Card, 1985; Ludden and Hubert, 1986; Ludden et al., 1986; Card, 1990; Jackson and Sutcliffe, 1990; Williams, 1990; Corfu, 1993; Heather et al., 1995; Jackson and Cruden, 1995). The metallogenic history of the Superior province has been described in detail by Franklin and Thorpe (1982) and Poulsen et al. (1992).
The Abitibi subprovince (94,000 km2) is the largest of the greenstone belts. It contains the major gold and base metal mining camps in Canada (Fig. 2), with production and reserves totaling more than 480 Mt of massive sulfide and 4,700 t of Au. Metal production in the western portion of the Abitibi greenstone belt is dominated by the Timmins region, which historically has accounted for 37 percent of the total gold production