Electromagnetic (EM) methods are among the original techniques for subsurface characterization in exploration geophysics because of their particular sensitivity to the earth electrical conductivity, a physical property of rocks distinct yet complementary to density, magnetization, and strength. However, this unique ability also makes them sensitive to metallic artifacts — infrastructure such as pipes, cables, and other forms of cultural clutter — the EM footprint of which often far exceeds their diminutive stature when compared to that of bulk rock itself. In the hunt for buried treasure or unexploded ordnance, this is an advantage; in the long-term monitoring of mature oil fields after decades of production, it is quite troublesome indeed. Here we consider the latter through the lens of an evolving energy industry landscape in which the traditional methods of EM characterization for the exploration geophysicist are applied toward emergent problems in well-casing integrity, carbon capture and storage, and overall situational awareness in the oil field. We introduce case studies from these exemplars, showing how signals from metallic artifacts can dominate those from the target itself and impose significant burdens on the requisite simulation complexity. We also show how recent advances in numerical methods mitigate the computational explosivity of infrastructure modeling, providing feasible and real-time analysis tools for the desktop geophysicist. Lastly, we demonstrate through comparison of field data and simulation results that incorporation of infrastructure into the analysis of such geophysical data is, in a growing number of cases, a requisite but now manageable step.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.