Seismic records are characterized by a high level of complexity resulting from the interaction of different types of waves propagating in the subsurface. Interpretation of the different wave modes and features present in a seismic record generally is done by expert judgment, and its automatization is a problem that has not been resolved completely. We present a methodology that uses pattern recognition to select the best seismic attributes that should be chosen to detect and classify surface waves in a seismic record, based on the notion of similarity, and that is applied on the automatic interpretation of three different seismic-data record sets. The classification obtained for these different real data sets exhibits well-differentiated zones that improve and automatize the expert judgment interpretation.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.