Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocity of high-frequency (≥ 2 Hz) surface (Rayleigh and/or Love) waves (e.g., Song et al., 1989). Multichannel analysis of surface waves (MASW) uses phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine S-wave velocities (Miller et al., 1999). Multichannel analysis of Love waves (MALW) uses phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities (Xia, 2012b). Both MASW and MALW possess stable and efficient inversion algorithms to invert phase velocities of surface waves but MALW has some attractive advantages: (1) Love-wave dispersion curves are simpler than those of Rayleigh waves; (2) dispersion images of Love-wave energy have a higher signal-to-noise ratio and are more focused than those generated from Rayleigh waves; and (3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than from Rayleigh waves.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.