Porosity is a fundamental property that characterizes the storage capability of fluid and gas-bearing formations in a reservoir. An accurate porosity value can be measured from core samples in the laboratory; however, core analysis is expensive and time consuming. Well-log data can be used to calculate porosity, but the availability of log suites is often limited in mature fields. Therefore, robust porosity prediction requires integration of core-measured porosity with available well-log suites to control for changes in lithology and fluid content. A support vector machine (SVM) model with mixed kernel function (MKF) is used to construct the relationship between limited conventional well-log suites and sparse core data. Porosity is the desired output, and two conventional well-log responses (gamma ray [GR] and bulk density) and three well-log-derived parameters (the slope of GR, the slope of density, and Vsh) are input parameters. A global stochastic searching algorithm, particle swarm optimization (PSO), is applied to improve the efficiency of locating the appropriate values of five control parameters in MKF-SVM model. The results of SVM with different traditional kernel functions were compared, and the MKF-SVM model provided an improvement over the traditional SVM model. To confirm the advantage of the hybrid PSO-MKF-SVM model, the results from three models: (1) radial basis function (RBF)-based least-squares SVM, (2) multilayer perceptron artificial neural network (ANN), and (3) RBF ANN, are compared with the result of the hybrid PSO-MKF-SVM model. The results indicate that the hybrid PSO-MKF-SVM model improves porosity prediction with the highest correlation coefficient (γ of 0.9560), the highest coefficient of determination (R2 of 0.9140), the lowest root-mean-square error (1.6505), average absolute error value (1.4050), and maximum absolute error (2.717).

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.