Abstract
The term acquisition footprint is commonly used to define patterns in seismic time and horizon slices that are closely correlated to the acquisition geometry. Seismic attributes often exacerbate footprint artifacts and may pose pitfalls to the less experienced interpreter. Although removal of the acquisition footprint is the focus of considerable research, the sources of such artifact acquisition footprint are less commonly discussed or illustrated. Based on real data examples, we have hypothesized possible causes of footprint occurrence and created them through synthetic prestack modeling. Then, we processed these models using the same workflows used for the real data. Computation of geometric attributes from the migrated synthetics found the same footprint artifacts as the real data. These models showed that acquisition footprint could be caused by residual ground roll, inaccurate velocities, and far-offset migration stretch. With this understanding, we have examined the real seismic data volume and found that the key cause of acquisition footprint was inaccurate velocity analysis.