ABSTRACT
We introduce a probabilistic technique for full-waveform inversion, using variational inference and conditional normalizing flows to quantify uncertainty in migration-velocity models and its impact on imaging. Our approach integrates generative artificial intelligence with physics-informed common-image gathers, reducing reliance on accurate initial velocity models. Considered case studies demonstrate its efficacy producing realizations of migration-velocity models conditioned by the data. These models are used to quantify amplitude and positioning effects during subsequent imaging.
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.