We have developed a 1D laterally constrained inversion of surface-wave dispersion curves based on the minimum gradient support regularization, which allows solutions with tunable sharpness in the vertical and horizontal directions. The forward modeling consists of a finite-elements approach incorporated in a flexible nonparametric gradient-based inversion scheme, which has already demonstrated good stability and convergence capabilities when tested on other kinds of data. Our deterministic inversion procedure is performed in the shear-wave velocity log space as we noticed that the associated Jacobian indicates a reduced model dependency, and this, in turn, decreases the risks of local nonconvexity. We show several synthetics and one field example to demonstrate the effectiveness and the applicability of the proposed approach.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.