We have developed a workflow for computing the seismic-wave moduli dispersion and attenuation due to squirt flow in a numerical model derived from a micro X-ray computed tomography image of cracked (through thermal treatment) Carrara marble sample. To generate the numerical model, the image is processed, segmented, and meshed. The finite-element method is adopted to solve the linearized, quasistatic Navier-Stokes equations describing laminar flow of a compressible viscous fluid inside the cracks coupled with the quasistatic Lamé-Navier equations for the solid phase. We compute the effective P- and S-wave moduli in the three Cartesian directions for a model in dry conditions (saturated with air) and for a smaller model fully saturated with glycerin and having either drained or undrained boundary conditions. For the model saturated with glycerin, the results indicate significant and frequency-dependent P- and S-wave attenuation and the corresponding dispersion caused by squirt flow. Squirt flow occurs in response to fluid pressure gradients induced in the cracks by the imposed deformations. Our digital rock-physics workflow can be used to interpret laboratory measurements of attenuation using images of the rock sample.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.