Time-domain elastic least-squares reverse time migration (LSRTM) is formulated as a linearized elastic full-waveform inversion problem. The elastic Born approximation and elastic reverse time migration (RTM) operators are derived from the time-domain continuous adjoint-state method. Our approach defines P- and S-wave impedance perturbations as unknown elastic images. Our algorithm is obtained using continuous functional analysis in which the problem is discretized at the final stage (optimize-before-discretize approach). The discretized numerical versions of the elastic Born operator and its adjoint (elastic RTM operator) pass the dot-product test. The conjugate gradient least-squares method is used to solve the least-squares migration quadratic optimization problem. In other words, the Hessian operator for elastic LSRTM is implicitly inverted via a matrix-free algorithm that only requires the action of forward and adjoint operators on vectors. The diagonal of the pseudo-Hessian operator is used to design a preconditioning operator to accelerate the convergence of the elastic LSRTM. The elastic LSRTM provides higher resolution images with fewer artifacts and a superior balance of amplitudes when compared with elastic RTM. More important, elastic LSRTM can mitigate crosstalk between the P- and S-wave impedance perturbations given that the off-diagonal elements of the Hessian are attenuated via the inversion.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.