ABSTRACT
We propose to solve the two-way time domain acoustic wave equation in a generalized Riemannian coordinate system via finite-differences. The coordinate system is defined in such a way that one of its independent variables conforms to the primary wavefront, for example, using a ray coordinate system with the traveltime being one of the coordinates. At each finite-difference time-step, the solution domain is limited to a narrow corridor around the primary wavefront, leading to an increase in the computational performance. A new finite-difference scheme is introduced to stabilize the solution and facilitate its implementation. This new scheme is a blend of the simple explicit and the stable implicit schemes. As a proof of concept, the proposed method is compared to the classical explicit finite-difference scheme performed in Cartesian coordinates on two synthetic velocity models with varying complexities. At a reduced cost, the proposed method produces similar results to the classical one; however, some amplitude differences arise due to various implementation issues. The most direct application for the proposed method is the source side of reverse time migration.