An appropriate form of induced polarization (IP) acts as a bridge between the structure of a water-saturated core plug and its transport properties. The induced-polarization decay curves of natural rocks can be modeled as a weighted superposition of exponential relaxations. A singular-value decomposition method makes it possible to transform the induced-polarization decay data of the shaley sands into relaxation-time spectrum, defined as plot of weight versus the relaxation-time constant. We measured the induced-polarization decay curves of core samples from a formation of Daqing oil field using a four-electrode method. The decay curves were transformed to relaxation-time spectra that were used to estimate the capillary-pressure curves, the pore-size distribution, and the permeability of the shaley sands. The results show that salinity ranges from 1g/literto20g/liter have little effect on the IP relaxation-time spectra. A pseudocapillary pressure curve can be derived from the IP relaxation-time spectrum by matching the pseudocapillary curve with that from HgAir. The best-matching coefficients of the studied cores change slightly for the samples. Defined as the value of pressure at which the injected mercury saturation is 5%, entry pressures of the cores can be estimated well from IP-derived capillary-pressure curves. Pore-size distributions generated from induced polarization and mercury capillary-pressure curves are comparable. Permeability can be predicted from IP measurements in the form of KIP=cTmϕn, where KIP is the estimated permeability from IP relaxation spectrum in millidarcies (md), ϕ is the porosity in percentage, and T is average time constant of IP relaxation-time spectra in millis (ms). The constants and exponents from various rock formations are slightly different.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.