Quantitative measurements of seismic anisotropy can provide a valuable clue to the lithology and degree of stratification in sedimentary rocks with hydrocarbon potential. We present a practical technique for obtaining anisotropy parameters (i.e., five stiffness coefficients A, C, F, L, and M) from seismic traveltime measurements for horizontally layered, transversely isotropic media. The technique is based on the construction of ray-velocity surfaces in terms of five measurement parameters. An iterative model-based optimization scheme is then used to invert the traveltime parameters for the five stiffness coefficients in a layer-stripping mode.Both model and field experiments are performed to demonstrate the feasibility of the method. The model experiment shows that inversion errors (especially in stiffness coefficients A, F, and M) increase with increasing number of layers. Despite these errors, the proposed method does provide a quantitative measure of velocity anisotropy as additional information that cannot be obtained readily from conventional methods. A field VSP data example shows the correlation between the anisotropy parameters and lithology: Chalk and shale exhibited high degrees of anisotropy, and sands showed low degrees of anisotropy.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.