An algorithm for the accurate evaluation of Hankel (or Bessel) transforms of algebraically related kernel functions. The algorithm performs the automatic integration of the product of the kernel and Bessel functions between the asymptotic zero crossings of the latter and sums the series of partial integrations using a continued fraction expansion, equivalent to an analytic continuation of the series.--Modified journal abstract.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page of Numerical integration of related Hankel transforms by quadrature and continued fraction expansion
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.