Abstract
A model is presented to describe the attenuation of seismic waves in rocks with partially liquid-saturated flat cracks or pores. The presence of at least a small fraction of a free gaseous phase permits the fluid to flow freely when the pore is compressed under wave excitation. The resulting attenuation is much higher than with complete saturation as treated by Biot. In general, the attenuation increases with increasing liquid concentration, but is much more sensitive to the aspect ratios of the pores and the liquid droplets occupying the pores, with flatter pores resulting in higher attenuation. Details of pore shape other than aspect ratio appear to have little effect on the general behavior provided the crack width is slowly varying over the length of the liquid drop.