- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
North America
-
Belt Basin (1)
-
Denali Fault (1)
-
-
United States
-
Alaska
-
Alaska Range (1)
-
-
Idaho (1)
-
Montana (1)
-
-
-
fossils
-
microfossils (1)
-
palynomorphs (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene (1)
-
Pliocene (1)
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous (1)
-
-
-
Phanerozoic (1)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic
-
Belt Supergroup (1)
-
-
-
-
-
-
Primary terms
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene (1)
-
Pliocene (1)
-
-
-
-
faults (1)
-
intrusions (1)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous (1)
-
-
-
North America
-
Belt Basin (1)
-
Denali Fault (1)
-
-
paleogeography (1)
-
palynomorphs (1)
-
Phanerozoic (1)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic
-
Belt Supergroup (1)
-
-
-
-
-
sedimentary rocks
-
clastic rocks
-
conglomerate (1)
-
mudstone (1)
-
sandstone (1)
-
-
-
sedimentary structures (1)
-
sedimentation (2)
-
sediments
-
clastic sediments
-
mud (1)
-
sand (1)
-
-
marine sediments (1)
-
-
United States
-
Alaska
-
Alaska Range (1)
-
-
Idaho (1)
-
Montana (1)
-
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
conglomerate (1)
-
mudstone (1)
-
sandstone (1)
-
-
-
-
sedimentary structures
-
sedimentary structures (1)
-
-
sediments
-
sediments
-
clastic sediments
-
mud (1)
-
sand (1)
-
-
marine sediments (1)
-
-
Crinkle cracks are sand-filled cracks up to 5 mm wide in plan view that pinch at their ends. In cross section, they are canted and crinkled. They cut mudstone beds that underlie hummocky cross-laminated sandstone lenses. They are here described from the Piegan Group, Proterozoic Belt Supergroup, but they are widespread in Proterozoic and Phanerozoic marine and lacustrine rocks. However, they represent a distinctive, descriptive style of mudcracks, not attributed to inferred syneresis processes, although they have been commonly attributed to syneresis. In plan view, crinkle cracks closely resemble cracks formed where oscillatory waves striking viscous mud banks are transformed into fluid solitary-like waves that open surface cracks on their trailing limbs and close the cracks on their leading limbs as they pass through the viscous mud. Crinkle cracks preserved in rocks are hypothetically attributed to oscillatory waves moving sand over viscous mud. The oscillatory waves are transformed into solitary-like waves as they pass down into the mud, forming the cracks. The surface sand falls down into the cracks, preserving them. With burial, the water escapes, and the viscous mud compacts, crinkling the sand-filled cracks.
Neogene strata of the Tanana basin provide a long-term record of a northward-propagating, transpressional foreland-basin system related to regional shortening of the central Alaska Range and strike-slip displacement on the Denali fault system. These strata are ∼2 km thick and have been deformed and exhumed in thrust faults that form the foothills on the north side of the Alaska Range. The lower part of the sedimentary package, the Usibelli Group, consists of 800 m of mainly Miocene strata that were deposited in fluvial, lacustrine, and peat bog environments of the foredeep depozone of the foreland-basin system. Compositional data from conglomerate and sandstone, as well as recycled Upper Cretaceous palynomorphs, indicate that the Miocene foreland-basin system was supplied increasing amounts of sediment from lithologies currently exposed in thrust sheets located south of the basin. The upper part of the sedimentary package, the Nenana Gravel, consists of 1200 m of mainly Pliocene strata that were deposited in alluvial-fan and braidplain environments in the wedge-top depozone of the foreland-basin system. Compositional data from conglomerate and sandstone, as well as 40 Ar/ 39 Ar dating of detrital feldspars in sandstone and from granitic clasts in conglomerate, indicate that lithologies exposed in the central Alaska Range provided most of the detritus to the Pliocene foreland-basin system. 40 Ar/ 39 Ar dates from detrital feldspar grains also show that two main suites of plutons contributed sediment to the Nenana Gravel. Detrital feldspars with an average age of 56 Ma are interpreted to have been derived from the McKinley sequence of plutons located south of the Denali fault. Detrital feldspars with an average age of 34 Ma are interpreted to have been derived from plutons located north of the Denali fault. Plutons located south of the Denali fault provided detritus for the lower part of the Nenana Gravel, whereas plutons located north of the Denali fault began to contribute sediment during deposition of the upper part of the Nenana Gravel. This age distribution documented in detrital feldspars of the Nenana Gravel is interpreted as representing a progressive northward exhumation of plutons that were located south of the Pliocene Tanana basin. In contrast to previous studies, we interpret the Usibelli Group and Nenana Gravel to represent a continuum in the evolution of a transpressional foreland basin that began during Miocene time on the north side of the Alaska Range.