Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Far East
-
China
-
Qinling Mountains (1)
-
-
-
Middle East
-
Iran (1)
-
-
-
Makran (1)
-
North America
-
Canadian Shield
-
Grenville Province (1)
-
-
North American Cordillera (1)
-
-
Sierra Nevada (2)
-
United States
-
California
-
Nevada County California (1)
-
Northern California (1)
-
-
New York
-
Adirondack Mountains (2)
-
-
-
-
commodities
-
metal ores
-
beryllium ores (1)
-
copper ores (1)
-
gold ores (4)
-
iron ores (2)
-
lead ores (1)
-
lead-zinc deposits (1)
-
molybdenum ores (1)
-
niobium ores (1)
-
rare earth deposits (2)
-
zinc ores (1)
-
zirconium ores (1)
-
-
mineral deposits, genesis (6)
-
mineral exploration (1)
-
phosphate deposits (1)
-
-
elements, isotopes
-
isotope ratios (3)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
-
stable isotopes
-
Hf-177/Hf-176 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
S-34/S-32 (1)
-
-
-
metals
-
alkali metals
-
lithium (1)
-
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
lead
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
-
niobium (1)
-
rare earths (5)
-
rhenium (1)
-
tantalum (1)
-
zirconium (1)
-
-
oxygen (1)
-
sulfur
-
S-34/S-32 (1)
-
-
-
geochronology methods
-
Ar/Ar (1)
-
Nd/Nd (1)
-
paleomagnetism (2)
-
U/Pb (3)
-
U/Th/Pb (1)
-
-
geologic age
-
Cenozoic
-
Tertiary (1)
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous (1)
-
-
Triassic
-
Upper Triassic (1)
-
-
-
Paleozoic
-
Carboniferous (1)
-
Devonian (1)
-
Permian (1)
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
anorthosite (1)
-
gabbros (1)
-
granites (1)
-
granodiorites (1)
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
gneisses
-
granite gneiss (1)
-
paragneiss (1)
-
-
metasedimentary rocks
-
paragneiss (1)
-
-
-
-
minerals
-
oxides
-
iron oxides (2)
-
magnetite (1)
-
-
phosphates
-
apatite (2)
-
monazite (1)
-
xenotime (1)
-
-
silicates
-
chain silicates
-
amphibole group
-
clinoamphibole
-
hornblende (1)
-
-
-
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (3)
-
-
-
-
sheet silicates
-
mica group
-
biotite (1)
-
-
-
-
sulfides (1)
-
-
Primary terms
-
absolute age (3)
-
Asia
-
Far East
-
China
-
Qinling Mountains (1)
-
-
-
Middle East
-
Iran (1)
-
-
-
Cenozoic
-
Tertiary (1)
-
-
crust (1)
-
data processing (1)
-
deformation (1)
-
faults (1)
-
geochemistry (1)
-
geophysical methods (2)
-
igneous rocks
-
plutonic rocks
-
anorthosite (1)
-
gabbros (1)
-
granites (1)
-
granodiorites (1)
-
-
-
inclusions
-
fluid inclusions (2)
-
-
intrusions (1)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
-
stable isotopes
-
Hf-177/Hf-176 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
S-34/S-32 (1)
-
-
-
magmas (2)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous (1)
-
-
Triassic
-
Upper Triassic (1)
-
-
-
metal ores
-
beryllium ores (1)
-
copper ores (1)
-
gold ores (4)
-
iron ores (2)
-
lead ores (1)
-
lead-zinc deposits (1)
-
molybdenum ores (1)
-
niobium ores (1)
-
rare earth deposits (2)
-
zinc ores (1)
-
zirconium ores (1)
-
-
metals
-
alkali metals
-
lithium (1)
-
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
lead
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
-
niobium (1)
-
rare earths (5)
-
rhenium (1)
-
tantalum (1)
-
zirconium (1)
-
-
metamorphic rocks
-
gneisses
-
granite gneiss (1)
-
paragneiss (1)
-
-
metasedimentary rocks
-
paragneiss (1)
-
-
-
mineral deposits, genesis (6)
-
mineral exploration (1)
-
North America
-
Canadian Shield
-
Grenville Province (1)
-
-
North American Cordillera (1)
-
-
orogeny (1)
-
oxygen (1)
-
paleogeography (1)
-
paleomagnetism (2)
-
Paleozoic
-
Carboniferous (1)
-
Devonian (1)
-
Permian (1)
-
-
paragenesis (2)
-
phosphate deposits (1)
-
plate tectonics (2)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (1)
-
-
-
-
sedimentary rocks (1)
-
sulfur
-
S-34/S-32 (1)
-
-
tectonics (1)
-
United States
-
California
-
Nevada County California (1)
-
Northern California (1)
-
-
New York
-
Adirondack Mountains (2)
-
-
-
-
sedimentary rocks
-
sedimentary rocks (1)
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Paragenesis of an Orogenic Gold Deposit: New Insights on Mineralizing Processes at the Grass Valley District, California Available to Purchase
Integrated geophysical imaging of rare earth element-bearing iron oxide-apatite deposits in the Eastern Adirondack Highlands, New York Open Access
Geochemistry and Geophysics of Iron Oxide-Apatite Deposits and Associated Waste Piles with Implications for Potential Rare Earth Element Resources from Ore and Historical Mine Waste in the Eastern Adirondack Highlands, New York, USA Available to Purchase
Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China Available to Purchase
The Chahnaly Low-Sulfidation Epithermal Gold Deposit, Western Makran Volcanic Arc, Southeast Iran Available to Purchase
By-Products of Porphyry Copper and Molybdenum Deposits Available to Purchase
Abstract Porphyry Cu and porphyry Mo deposits are large to giant deposits ranging up to >20 and 1.6 Gt of ore, respectively, that supply about 60 and 95% of the world’s copper and molybdenum, as well as significant amounts of gold and silver. These deposits form from hydrothermal systems that affect 10s to >100 km 3 of the upper crust and result in enormous mass redistribution and potential concentration of many elements. Several critical elements, including Re, Se, and Te, which lack primary ores, are concentrated locally in some porphyry Cu deposits, and despite their low average concentrations in Cu-Mo-Au ores (100s of ppb to a few ppm), about 80% of the Re and nearly all of the Se and Te produced by mining is from porphyry Cu deposits. Rhenium is concentrated in molybdenite, whose Re content varies from about 100 to 3,000 ppm in porphyry Cu deposits, ≤150 ppm in arc-related porphyry Mo deposits, and ≤35 ppm in alkali-feldspar rhyolite-granite (Climax-type) porphyry Mo deposits. Because of the relatively small size of porphyry Mo deposits compared to porphyry Cu deposits and the generally low Re contents of molybdenites in them, rhenium is not recovered from porphyry Mo deposits. The potential causes of the variation in Re content of molybdenites in porphyry deposits are numerous and complex, and this variation is likely the result of a combination of processes that may change between and within deposits. These processes range from variations in source and composition of parental magmas to physiochemical changes in the shallow hydrothermal environment. Because of the immense size of known and potential porphyry Cu resources, especially continental margin arc deposits, these deposits likely will provide most of the global supply of Re, Te, and Se for the foreseeable future. Although Pd and lesser Pt are recovered from some deposits, platinum group metals are not strongly enriched in porphyry Cu deposits and PGM resources contained in known porphyry deposits are small. Because there are much larger known PGM resources in deposits in which PGMs are the primary commodities, it is unlikely that porphyry deposits will become a major source of PGMs. Other critical commodities, such as In and Nb, may eventually be recovered from porphyry Cu and Mo deposits, but available data do not clearly define significant resources of these commodities in porphyry deposits. Although alkali-feldspar rhyolite-granite porphyry Mo deposits and their cogenetic intrusions are locally enriched in many rare metals (such as Li, Nb, Rb, Sn, Ta, and REEs) and minor amounts of REEs and Sn have been recovered from the Climax mine, these elements are generally found in uneconomic concentrations. As global demand increases for critical elements that are essential for the modern world, porphyry deposits will play an increasingly important role as suppliers of some of these metals. The affinity of these metals and the larger size and greater number of porphyry Cu deposits suggest that they will remain more significant than porphyry Mo deposits in supplying many of these critical metals.