- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
North America
-
Basin and Range Province (2)
-
-
San Andreas Fault (1)
-
United States
-
California
-
Coachella Valley (1)
-
Riverside County California (1)
-
Southern California (1)
-
-
Oregon
-
Deschutes County Oregon (1)
-
Harney County Oregon (1)
-
Lake County Oregon (1)
-
-
Western U.S. (1)
-
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (2)
-
Pleistocene (1)
-
-
Tertiary
-
Neogene
-
Miocene (1)
-
Pliocene (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
basalts (1)
-
-
-
-
Primary terms
-
Cenozoic
-
Quaternary
-
Holocene (2)
-
Pleistocene (1)
-
-
Tertiary
-
Neogene
-
Miocene (1)
-
Pliocene (1)
-
-
-
-
earthquakes (2)
-
faults (3)
-
geochemistry (1)
-
igneous rocks
-
volcanic rocks
-
basalts (1)
-
-
-
North America
-
Basin and Range Province (2)
-
-
paleoclimatology (1)
-
shorelines (1)
-
tectonics
-
neotectonics (1)
-
-
United States
-
California
-
Coachella Valley (1)
-
Riverside County California (1)
-
Southern California (1)
-
-
Oregon
-
Deschutes County Oregon (1)
-
Harney County Oregon (1)
-
Lake County Oregon (1)
-
-
Western U.S. (1)
-
-
Influence of pluvial lake cycles on earthquake recurrence in the northwestern Basin and Range, USA
ABSTRACT The Basin and Range hosted large pluvial lakes during the Pleistocene, which generally reached highstands following the Last Glacial Maximum and then regressed rapidly to near-modern levels. These lakes were large and deep enough to profoundly affect the crust through flexure; they filled basins formed by faults, and they locally modified pore pressure and groundwater conditions. A compilation of geochronologic constraints on paleoshorelines and paleoseismicity suggests temporal correlations between lake level and earthquake recurrence, with changes in earthquake rates as lakes regressed. In the northwestern Basin and Range, climatic and tectonic conditions differ from the rest of the province: The modern and glacial climate is/was cooler and wetter, glacial lakes were proportionally larger, and the crustal strain rate is lower. Numerous valleys host late Pleistocene and Holocene fault scarps and evidence of >M w 7 earthquakes in the last 15,000 yr. We compiled detailed lake hydrographs, timing of earthquakes and slip on faults, and other climatic and crustal data from Surprise Valley, Summer Lake, and the Fort Rock basin, along with additional data from other basins in the northwestern Basin and Range. We also present new mapping and topographic analysis of fault scarps that provides relative age constraints on the timing of slip events. Our results confirm temporal correlations, but the limited length of the paleoseismic record prevents definitive causation on the scale of the individual fault or lake basin. Taken together, however, data from all basins suggest that the faults in the northwestern Basin and Range could be acting as a system, with pluvial lake cycles affecting elastic strain accumulation and release across the region.
San Andreas Fault Earthquake Chronology and Lake Cahuilla History at Coachella, California
ABSTRACT A large part of the northwestern United States has undergone extensive late Cenozoic magmatic activity yielding one of the great continental volcanic provinces on Earth. Within this broader area lies the High Lava Plains province, the focus of this field guide. For our purposes, the High Lava Plains is a middle and late Cenozoic volcanic upland, contiguous with and gradational into the Basin and Range province to the south. The High Lava Plains province of southeastern Oregon is characterized by thin, widespread Miocene-Pleistocene lava flows of primitive basalt and a belt of silicic eruptive centers. The rhyolitic rocks generally are successively younger to the northwest, describing a mirror image to the basalt plateau and rhyolite age progression of the Snake River Plain. The High Lava Plains is associated with a zone of numerous, small northwest-striking faults and lies at the northern limit of major Basin and Range normal faults. The abundant late Cenozoic bimodal volcanism occupies an enigmatic intracontinental tectonic setting affected by Cascadia subduction, Basin and Range extension, the Yellowstone plume, and lithospheric topography at the edge of the North American craton. The purpose of this field trip is to focus on the late Cenozoic lithospheric evolution of this region, through the lens of the High Lava Plains, by considering structural, geophysical, petrologic, and temporal perspectives. A grand tour southeast from Bend to Valley Falls, north to Burns, and then east to Venator, Oregon, takes participants from the eastern edge of the Cascade volcanic arc, across several basins and ranges in eastern Oregon, and onto the volcanic plateau of the High Lava Plains. Day 1 provides an overview of Newberry Volcano and the western edge of Basin and Range, including the Ana River and Summer Lake fault zones. On Day 2, the early magmatic and extensional history of the region is explored along the Abert Rim range-front fault. Participants are introduced to the bimodal volcanism within the High Lava Plains, with focus on the Harney Basin and Rattlesnake ignimbrite event. An evening session will highlight geophysical results from the High Lava Plains, including new data from one of the largest active-source seismic experiments to be conducted in North America. Day 3 activities examine early bimodal volcanic history of the eastern High Lava Plains and the late Miocene and Pliocene subsidence history on the east edge of the Harney Basin east of Burns, Oregon.