- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Commonwealth of Independent States
-
Ukraine (1)
-
-
Europe
-
Carpathians
-
Slovakian Carpathians (1)
-
-
Central Europe
-
Poland (2)
-
Slovakia
-
Slovakian Carpathians (1)
-
-
-
Pieniny Klippen Belt (1)
-
Ukraine (1)
-
-
-
fossils
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Malacostraca (1)
-
-
-
-
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Paleocene (1)
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous (1)
-
-
Jurassic
-
Upper Jurassic
-
Tithonian (1)
-
-
-
-
-
Primary terms
-
Cenozoic
-
Tertiary
-
Paleogene
-
Paleocene (1)
-
-
-
-
Europe
-
Carpathians
-
Slovakian Carpathians (1)
-
-
Central Europe
-
Poland (2)
-
Slovakia
-
Slovakian Carpathians (1)
-
-
-
Pieniny Klippen Belt (1)
-
Ukraine (1)
-
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Malacostraca (1)
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous (1)
-
-
Jurassic
-
Upper Jurassic
-
Tithonian (1)
-
-
-
-
paleogeography (1)
-
plate tectonics (1)
-
sedimentary rocks
-
carbonate rocks
-
limestone (1)
-
-
clastic rocks (1)
-
-
sedimentary structures
-
soft sediment deformation
-
olistoliths (1)
-
olistostromes (1)
-
-
-
tectonics (1)
-
-
sedimentary rocks
-
flysch (1)
-
sedimentary rocks
-
carbonate rocks
-
limestone (1)
-
-
clastic rocks (1)
-
-
-
sedimentary structures
-
sedimentary structures
-
soft sediment deformation
-
olistoliths (1)
-
olistostromes (1)
-
-
-
A new spiny lobster from the Upper Jurassic Štramberk-type limestones of Inwałd, Andrychów Klippen, southern Poland
Olistostromes of the Pieniny Klippen Belt, Northern Carpathians
Jurassic
Abstract The Jurassic System (199.6-145.5 Ma; Gradstein et al. 2004 ), the second of three systems constituting the Mesozoic era, was established in Central Europe about 200 years ago. It takes its name from the Jura Mountains of eastern France and northernmost Switzerland. The term ‘Jura Kalkstein’ was introduced by Alexander von Humboldt as early as 1799 to describe a series of carbonate shelf deposits exposed in the Jura mountains. Alexander Brongniart (1829) first used the term ‘Jurassique', while Leopold von Buch (1839) established a three-fold subdivision for the Jurassic (Lias, Dogger, Malm). This three-fold subdivision (which also uses the terms black Jura, brown Jura, white Jura) remained until recent times as three series (Lower, Middle, Upper Jurassic), although the respective boundaries have been grossly redefined. The immense wealth of fossils, particularly ammonites, in the Jurassic strata of Britain, France, Germany and Switzerland was an inspiration for the development of modern concepts of biostratigraphy, chronostratigraphy, correlation and palaeogeography. In a series of works, Alcide d'Orbigny (1842-51, 1852) distinguished stages of which seven are used today (although none of them has retained its original strati graphic range). Albert Oppel (1856-1858) developed a sequence of such divisions for the entire Jurassic System, crucially using the units in the sense of time divisions. During the nineteenth and twentieth centuries many additional stage names were proposed - more than 120 were listed by Arkell (1956) . It is due to Arkell's influence that most of these have been abandoned and the table of current stages for the Jurassic (comprising 11 internationally accepted stages, grouped into three series) shows only two changes from that used by Arkell: separation of the Aalenian from the lower Bajocian was accepted by international agreement during the second Luxembourg Jurassic Colloquium in 1967, and the Tithonian was accepted as the Global Standard for the uppermost stage in preference to Portlandian and Volgian by vote of the Jurassic Subcommission ( Morton 1974 , 2005 ). As a result, the international hierarchical subdivision of the Jurassic System into series and stages has been stable for many years.
Abstract Sixteen time interval maps were constructed that depict the latest Precambrian to Neogene plate-tectonic configuration, paleogeography, and lithofacies of the circum-Carpathian area. The plate-tectonic model used was based on PLATES and PALEOMAP software. The supercontinent Pannotia was assembled during the latest Precambrian as a result of the Pan-African and Cadomian orogenies. All Precambrian terranes in the circum-Carpathian realm belonged to the supercontinent Pannotia, which, during the latest Precambrian–earliest Cambrian, was divided into Gondwana, Laurentia, and Baltica. The split of Gondwana during the Paleozoic caused the origin of the Avalonian and then Gothic terranes. The subsequent collision of these terranes with Baltica was expressed in the Caledonian and Hercynian orogenies. The terrane collision was followed by the collision between Gondwana and the amalgamation of Baltica and Laurentia known as Laurussia. The basement of most of the plates, which was an important factor in the Mesozoic–Cenozoic evolution of the circum-Carpathian area, was formed during the late Paleozoic collisional events. The older Cadomian and Caledonian basement elements experienced Hercynian tectonothermal overprint. The Mesozoic rifting events resulted in the origin of oceanic-type basins like Meliata and Pieniny along the northern margin of the Tethys. The separation of Eurasia from Gondwana resulted in the formation of the Ligurian–Penninic–Pieniny Ocean as a continuation of the Central Atlantic Ocean and as part of the Pangean breakup tectonic system. During the Late Jurassic–Early Cretaceous, the Outer Carpathian rift developed. Copyright ©2006. The American Association of Petroleum Geologists. DOI:10.1306/985606M843066 The latest Cretaceous–earliest Paleocene was the time of the closure of the Pieniny Ocean. The Adria–Alcapa terranes continued their northward movement during the Eocene–early Miocene. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and foreland basin. The northward movement of the Alpine segment of the Carpathian–Alpine orogen has been stopped because of the collision with the Bohemian Massif. At the same time, the extruded Carpatho-Pannonian units were pushed to the open space toward the bay of weak crust filled up by the Outer Carpathian flysch sediments. The separation of the Carpatho-Pannonian segment from the Alpine one and its propagation to the north were related to the development of the north–south dextral strike-slip faults. The formation of the Western Carpathian thrusts was completed by the Miocene. The thrust front was still progressing eastward in the Eastern Carpathians. The Carpathian loop, including the Pieniny Klippen structure, was formed. The Neogene evolution of the Carpathians resulted also in the formation of the genetically different sedimentary basins. The various basins were formed because of the lithospheric extension, flexure, and strike-slip-related processes.