- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean
-
North Atlantic
-
Baltic Sea (2)
-
-
-
Caribbean region (1)
-
Central America
-
Costa Rica (2)
-
Panama (1)
-
-
Europe
-
Baltic region (2)
-
Central Europe
-
Germany
-
Mecklenburg-Western Pomerania Germany
-
Rugen Island (2)
-
-
-
-
Fennoscandian Shield (1)
-
Tornquist-Teisseyre Zone (1)
-
-
Mexico
-
Guerrero Mexico (1)
-
Oaxaca Mexico (1)
-
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific
-
Middle America Trench (1)
-
-
-
North Pacific
-
Northeast Pacific
-
Middle America Trench (1)
-
-
-
-
United States
-
North Carolina (1)
-
-
-
fossils
-
problematic fossils (1)
-
-
geochronology methods
-
paleomagnetism (1)
-
-
geologic age
-
Cenozoic
-
Tertiary (1)
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous (2)
-
-
Jurassic (1)
-
-
Paleozoic
-
Carboniferous
-
Upper Carboniferous (1)
-
-
Devonian
-
Middle Devonian (1)
-
-
-
Precambrian (1)
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
ultramafics (1)
-
-
-
ophiolite (1)
-
-
metamorphic rocks
-
ophiolite (1)
-
-
Primary terms
-
Atlantic Ocean
-
North Atlantic
-
Baltic Sea (2)
-
-
-
Caribbean region (1)
-
Cenozoic
-
Tertiary (1)
-
-
Central America
-
Costa Rica (2)
-
Panama (1)
-
-
crust (1)
-
data processing (2)
-
deformation (1)
-
Europe
-
Baltic region (2)
-
Central Europe
-
Germany
-
Mecklenburg-Western Pomerania Germany
-
Rugen Island (2)
-
-
-
-
Fennoscandian Shield (1)
-
Tornquist-Teisseyre Zone (1)
-
-
faults (4)
-
geochemistry (1)
-
geophysical methods (2)
-
igneous rocks
-
plutonic rocks
-
ultramafics (1)
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous (2)
-
-
Jurassic (1)
-
-
Mexico
-
Guerrero Mexico (1)
-
Oaxaca Mexico (1)
-
-
Ocean Drilling Program
-
Leg 170
-
ODP Site 1039 (1)
-
ODP Site 1040 (1)
-
ODP Site 1043 (1)
-
-
-
orogeny (1)
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific
-
Middle America Trench (1)
-
-
-
North Pacific
-
Northeast Pacific
-
Middle America Trench (1)
-
-
-
-
paleogeography (1)
-
paleomagnetism (1)
-
Paleozoic
-
Carboniferous
-
Upper Carboniferous (1)
-
-
Devonian
-
Middle Devonian (1)
-
-
-
plate tectonics (3)
-
Precambrian (1)
-
problematic fossils (1)
-
sediments
-
marine sediments (1)
-
-
tectonics (2)
-
tectonophysics (2)
-
United States
-
North Carolina (1)
-
-
-
sediments
-
sediments
-
marine sediments (1)
-
-
Abstract The Tornquist Fan, reflecting the northern part of the Trans-European Suture Zone, comprises a series of fault zones and major single faults, striking mainly subparallel to the SW margin of the Fennoscandian Shield. The deep-seated faults of Wiek, Nord Jasmund and Schaabe, which cross the northern part of Rügen Island and areas of the adjacent Baltic Sea from NW to SE, originated in the late Paleozoic. They are accompanied by younger faults, especially in the Pomeranian Bay, that were formed by Mesozoic tectonic processes. Based on reprocessed offshore seismic lines east of Rügen, a polyphase evolution for the Wiek Fault System is proposed. It implies changes in the stress field since the Caledonian Orogeny. Crustal extension in the Middle Devonian led to the formation of basins along the SW margin of Laurussia. Subsequent compressional movements, induced by the distant Variscan Orogeny, resulted in segmentation and block faulting of the Rügen Basin prior to the late Carboniferous. These Paleozoic faults were reactivated by Mesozoic extensional stress regimes. In addition, new en echelon faults were generated, contemporaneously with the formation of the Western Pomeranian Fault System. Since the Late Cretaceous (Africa–Iberia–Europe convergence), selected major normal faults have been reactivated as reverse faults.
Abstract Based on reprocessed offshore seismic lines acquired during oil and gas exploration in the 1980s, we reconstruct the formation and reactivation of major fault systems in the southern Baltic Sea area since the late Paleozoic. The geological evolution of different crustal blocks from the Caledonian Avalonia–Baltica collision until the Late Cretaceous–Paleogene inversion tectonics is also examined. The detected fault systems occur in the northern part of the Trans-European Suture Zone (TESZ) and belong either to the late Paleozoic Tornquist Fan or to the complex Western Pomeranian Fault System (WPFS) generated during Mesozoic extensional movements. While the NW–SE-trending deep Wiek Fault separates the Arkona High from the Middle Rügen Block, the NNW–SSE-trending Agricola Fault demarcates the Middle Rügen Block to the Falster Block in the west. Together with the Plantagenet Fault and numerous younger faults in the Mesozoic cover, it forms the Agricola Fault System. Furthermore, structural analyses of the Prerow Fault Zone above the Prerow salt pillow and the Werre Fault Zone crossing the Grimmen High indicate a complex fault history.
The North American-Caribbean Plate boundary in Mexico-Guatemala-Honduras
Abstract New structural, geochronological, and petrological data highlight which crustal sections of the North American–Caribbean Plate boundary in Guatemala and Honduras accommodated the large-scale sinistral offset. We develop the chronological and kinematic framework for these interactions and test for Palaeozoic to Recent geological correlations among the Maya Block, the Chortís Block, and the terranes of southern Mexico and the northern Caribbean. Our principal findings relate to how the North American–Caribbean Plate boundary partitioned deformation; whereas the southern Maya Block and the southern Chortís Block record the Late Cretaceous–Early Cenozoic collision and eastward sinistral translation of the Greater Antilles arc, the northern Chortís Block preserves evidence for northward stepping of the plate boundary with the translation of this block to its present position since the Late Eocene. Collision and translation are recorded in the ophiolite and subduction–accretion complex (North El Tambor complex), the continental margin (Rabinal and Chuacús complexes), and the Laramide foreland fold–thrust belt of the Maya Block as well as the overriding Greater Antilles arc complex. The Las Ovejas complex of the northern Chortís Block contains a significant part of the history of the eastward migration of the Chortís Block; it constitutes the southern part of the arc that facilitated the breakaway of the Chortís Block from the Xolapa complex of southern Mexico. While the Late Cretaceous collision is spectacularly sinistral transpressional, the Eocene–Recent translation of the Chortís Block is by sinistral wrenching with transtensional and transpressional episodes. Our reconstruction of the Late Mesozoic–Cenozoic evolution of the North American–Caribbean Plate boundary identified Proterozoic to Mesozoic connections among the southern Maya Block, the Chortís Block, and the terranes of southern Mexico: (i) in the Early–Middle Palaeozoic, the Acatlán complex of the southern Mexican Mixteca terrane, the Rabinal complex of the southern Maya Block, the Chuacús complex, and the Chortís Block were part of the Taconic–Acadian orogen along the northern margin of South America; (ii) after final amalgamation of Pangaea, an arc developed along its western margin, causing magmatism and regional amphibolite–facies metamorphism in southern Mexico, the Maya Block (including Rabinal complex), the Chuacús complex and the Chortís Block. The separation of North and South America also rifted the Chortís Block from southern Mexico. Rifting ultimately resulted in the formation of the Late Jurassic–Early Cretaceous oceanic crust of the South El Tambor complex; rifting and spreading terminated before the Hauterivian ( c . 135 Ma). Remnants of the southwestern Mexican Guerrero complex, which also rifted from southern Mexico, remain in the Chortís Block (Sanarate complex); these complexes share Jurassic metamorphism. The South El Tambor subduction–accretion complex was emplaced onto the Chortís Block probably in the late Early Cretaceous and the Chortís Block collided with southern Mexico. Related arc magmatism and high- T /low- P metamorphism (Taxco–Viejo–Xolapa arc) of the Mixteca terrane spans all of southern Mexico. The Chortís Block shows continuous Early Cretaceous–Recent arc magmatism. Supplementary material: Analytical methods and data, and sample description are available at http://www.geolsoc.org.uk/SUP18360.