- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
United States
-
Kansas (1)
-
Midcontinent (1)
-
Oklahoma (1)
-
-
-
geologic age
-
Paleozoic
-
Carboniferous
-
Mississippian
-
Lower Mississippian (1)
-
Upper Mississippian (1)
-
-
Pennsylvanian (1)
-
-
-
-
minerals
-
carbonates
-
dolomite (1)
-
-
-
Primary terms
-
geophysical methods (1)
-
Paleozoic
-
Carboniferous
-
Mississippian
-
Lower Mississippian (1)
-
Upper Mississippian (1)
-
-
Pennsylvanian (1)
-
-
-
sedimentary rocks
-
chemically precipitated rocks
-
chert (1)
-
-
-
stratigraphy (1)
-
United States
-
Kansas (1)
-
Midcontinent (1)
-
Oklahoma (1)
-
-
-
sedimentary rocks
-
sedimentary rocks
-
chemically precipitated rocks
-
chert (1)
-
-
-
Seismic detection and interpretation of porosity in Carboniferous age rocks of Kansas and Oklahoma
Abstract Exploration for oil and gas has witnessed dramatic changes in its nearly 120 year history. Initially, prospects were located by surface shows or seeps; random drilling was predominant. In the early twentieth century, the anticlinal theory became a dominant element in locating traps. Direct mapping of structures by using magnetic, gravity, and seismic data began in the mid 1920s. In the last 10 years a true revolution has occurred in the use of seismic data in exploration. To a minor degree, the first use of seismic data to locate reefs and carbonate buildups took place in about 1950, but the main era of more quantitative stratigraphic trap detection began in the late 1960s when direct hydrocarbon detection by the so-called “bright spot” concept was first used in the Gulf Coast Cenozoic offshore. In a very short time since then, an increasingly sophisticated seismic mapping approach has swept through the exploration industry. It is now possible to map seismically subsurface stratigraphy, model stratigraphic analogs, and make comparisons of the recorded data with known analogs in order to “read the subsurface.” We are now on the verge of an era of synergism in revolution where exploration techniques are being integrated with reservoir delineation and production engineering methods. Synergism, according to Webster, is “the joint action of agents…, which when taken together increase each other's effectiveness.” Recognizing this need as a key to success, several companies have begun to integrate the know-how from geology, petrophysics, and reservoir engineering in developing plays such as