Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Publisher
Book Series
Date
Availability
A rapid model for estimating the depletion in river flows due to groundwater abstraction
Abstract The Environment Agency of England and Wales uses its calibrated regional models to estimate the reduction in river flows resulting from proposed groundwater abstractions. Where there is no regional model, analytical equations can produce quick initial estimates of river flow depletion. However, users often want more confidence in their estimates by representing more faithfully their understanding of the real river–aquifer system. This paper shows that, when using a numerical model designed to predict river flow depletion, it is important to include adjacent catchments and intermittent streams and less important to include river elevations and variations in transmissivity with groundwater head. Recharge does not usually need to be included unless part of the river becomes disconnected or dry. Therefore, for rivers where stream length is constant and transmissivity variations are small, it is valid to use a ‘no-recharge’ depletion model, which can be built quickly (within a month). A case study on the River Leith in NW England illustrates the use of such a model to assess the ecological impact of two groundwater abstraction licences under the European Union Habitats Directive.
Abstract Over the last 10 years there has been a unique regulator-led programme involving extensive development of regional groundwater models across England and Wales for water resources purposes by the Environment Agency for England and Wales. Eight regionally managed programmes are underpinned by a framework, which has allowed a coordinated national approach. The main uses of the models are for catchment abstraction management and licensing. Models have also assisted in monitoring network design, investigating groundwater quality and implementing groundwater source protection zones. A five-yearly review of the programmes recognized the importance of benefit realization and stakeholder involvement as well as technical good practice. The programme already delivered provides a solid foundation for supporting the management decisions required in areas such as climate change mitigation and integrated catchment management using appropriate tools at a time of rapid organization change and financial uncertainty.
Abstract The usage of modelling results by their intended audience is an important aspect of undertaking any project. However, providing the appropriate results in the correct way to key stakeholders is not a straightforward task. Fortunately, there is a growing body of work about approaching the engagement of stakeholders in a way to maximize the impact of modelling results. Using the lessons learnt from a number of recent workshops, including those conducted for the benefits realization process undertaken for the Environment Agency of England and Wales, suggestions for best practice are presented and their relative merits discussed. Best practice for getting groundwater modelling results used by their intended audience is proposed.
Abstract There is increasing evidence that groundwater flow in many parts of the major Permo-Triassic sandstone aquifers of NW England is influenced strongly by predominantly N–S-trending faults. These structural controls on groundwater flow may only become apparent when the aquifers are subject to abstraction stress. A series of case examples are presented, from the Fylde Sandstone aquifer north of Preston, and from the sandstone aquifers of the Lower Mersey Basin, Manchester and Wirral areas. In these studies the ‘compartmentalization’ of the aquifers by faults has been recognized in field investigations and also in numerical modelling studies related to groundwater resources development on both local and aquifer-wide scales.