- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Western Europe
-
United Kingdom
-
Great Britain
-
Scotland
-
Moine thrust zone (1)
-
-
-
-
-
-
-
geologic age
-
Paleozoic
-
Cambrian (1)
-
-
-
Primary terms
-
Europe
-
Western Europe
-
United Kingdom
-
Great Britain
-
Scotland
-
Moine thrust zone (1)
-
-
-
-
-
-
fractures (1)
-
Paleozoic
-
Cambrian (1)
-
-
sedimentary rocks
-
clastic rocks
-
sandstone (1)
-
-
-
structural analysis (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
sandstone (1)
-
-
-
Abstract A correlation is demonstrated between the presence of crack-seal texture and power-law kinematic aperture-size (width) distributions among opening-mode fractures in rocks of dominantly carbonate mineralogy. Crack-seal opening increments (opening-displacement increment sizes or ‘gaps’) within individual fractures follow narrow normal or log-normal size distributions, suggesting that fracture widening accumulates in characteristic (usually micrometre-scale) size increments. The scale invariance in overall fracture width distributions present in some fracture sets most likely arises from grouping of these increments (localization) to form larger fractures (millimetre- to centimetre-scale widths). Such localization could be a consequence of the tendency for larger, less cemented fractures to break preferentially during subsequent deformation. Cement accumulation patterns thus provide a mechanism for positive feedback whereby large-fracture growth exceeds small-fracture growth. Using characteristically sized growth increments, a fracture growth model accurately simulates fracture arrays having power-law fracture-width distributions. Model parameters can be altered to produce characteristic-width fracture size distributions. The results have implications for how fracture porosity and permeability evolve in carbonate reservoirs.