- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
East Africa
-
Kenya
-
Fort Ternan Kenya (1)
-
-
Tanzania (1)
-
-
Sahara (1)
-
Southern Africa
-
Karoo Basin (3)
-
Namibia (1)
-
South Africa
-
Cape Province region (1)
-
Western Cape Province South Africa (1)
-
-
-
-
Antarctica
-
Antarctic ice sheet (1)
-
Transantarctic Mountains
-
Beardmore Glacier (1)
-
Coalsack Bluff (1)
-
-
Victoria Land
-
Allan Hills (2)
-
-
-
Asia
-
Far East
-
China
-
Gansu China (2)
-
Sichuan Basin (1)
-
Xizang China (1)
-
Yangtze Platform (1)
-
-
-
Indian Peninsula
-
India
-
Himachal Pradesh India (1)
-
-
Pakistan (1)
-
-
Siberia (1)
-
Tibetan Plateau (1)
-
-
Australasia
-
Australia
-
New South Wales Australia (3)
-
South Australia (3)
-
Tasmania Australia (1)
-
Victoria Australia (1)
-
Western Australia
-
Canning Basin (1)
-
-
-
New Zealand (1)
-
-
Bowen Basin (1)
-
Canada
-
Eastern Canada
-
Newfoundland and Labrador
-
Newfoundland (3)
-
-
-
Western Canada
-
British Columbia (1)
-
-
-
Central America
-
Panama
-
Panama Canal Zone (1)
-
-
-
Europe
-
Western Europe
-
United Kingdom
-
Great Britain
-
Scotland (1)
-
-
-
-
-
Hunter Valley (1)
-
Indian Ocean (1)
-
North America
-
Appalachians
-
Northern Appalachians (1)
-
-
Great Plains (2)
-
-
Sydney Basin (3)
-
United States
-
Kansas (1)
-
Maryland (1)
-
Montana
-
McCone County Montana (2)
-
-
Nebraska (3)
-
New Mexico (1)
-
New York (1)
-
Oregon
-
Crook County Oregon (1)
-
Grant County Oregon (1)
-
Jefferson County Oregon (1)
-
Lane County Oregon (1)
-
Wasco County Oregon (1)
-
Wheeler County Oregon
-
Clarno Oregon (1)
-
-
-
Pennsylvania
-
Centre County Pennsylvania (1)
-
Mifflin County Pennsylvania (1)
-
-
South Dakota
-
Badlands National Park (3)
-
Pennington County South Dakota (2)
-
-
Tennessee (1)
-
Texas
-
Knox County Texas (1)
-
-
Utah
-
Sanpete County Utah (1)
-
-
Washington
-
Franklin County Washington (1)
-
-
-
-
commodities
-
metal ores
-
aluminum ores (1)
-
iron ores (1)
-
-
mineral exploration (1)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (10)
-
organic carbon (2)
-
-
chemical ratios (2)
-
isotope ratios (10)
-
isotopes
-
stable isotopes
-
C-13/C-12 (10)
-
O-18/O-16 (4)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
aluminum (1)
-
germanium (1)
-
iron (1)
-
platinum group
-
iridium (1)
-
-
-
oxygen
-
O-18/O-16 (4)
-
-
silicon (1)
-
-
fossils
-
burrows (3)
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Amphibia
-
Labyrinthodontia (1)
-
-
Mammalia (5)
-
Reptilia
-
Synapsida
-
Therapsida
-
Dicynodontia
-
Lystrosaurus (1)
-
-
-
-
-
-
-
-
fungi (1)
-
ichnofossils (5)
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Insecta
-
Pterygota
-
Neoptera
-
Endopterygota
-
Coleoptera (1)
-
Hymenoptera (1)
-
-
-
-
-
Myriapoda (1)
-
-
-
Cnidaria (1)
-
Mollusca
-
Gastropoda (2)
-
-
Protista
-
Foraminifera (3)
-
Radiolaria (1)
-
-
-
lichens (3)
-
Metazoa (1)
-
microfossils (8)
-
palynomorphs (5)
-
Plantae
-
algae (1)
-
Pteridophyta
-
Lycopsida (2)
-
Sphenopsida (1)
-
-
Spermatophyta
-
Angiospermae
-
Dicotyledoneae (2)
-
Monocotyledoneae
-
Gramineae (3)
-
-
-
Gymnospermae
-
Cycadales (1)
-
Ginkgoales
-
Ginkgo (1)
-
-
Glossopteridales
-
Gangamopteris (1)
-
Glossopteris
-
Glossopteris flora (1)
-
-
-
-
-
-
problematic fossils (4)
-
thallophytes (2)
-
tracks (1)
-
-
geochronology methods
-
Ar/Ar (2)
-
K/Ar (2)
-
paleomagnetism (3)
-
U/Pb (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
Tertiary
-
Arikaree Group (2)
-
John Day Formation (2)
-
lower Tertiary (2)
-
Neogene
-
Miocene
-
lower Miocene (1)
-
middle Miocene (3)
-
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
Clarno Formation (1)
-
lower Eocene
-
Willwood Formation (1)
-
-
Subathu Formation (1)
-
upper Eocene (3)
-
-
Flagstaff Formation (1)
-
Oligocene
-
Brule Formation (1)
-
lower Oligocene (1)
-
upper Oligocene (1)
-
-
Paleocene
-
lower Paleocene
-
K-T boundary (1)
-
-
Tullock Member (2)
-
upper Paleocene (1)
-
-
Paleocene-Eocene Thermal Maximum (1)
-
White River Group (2)
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Hell Creek Formation (2)
-
K-T boundary (1)
-
-
-
Triassic
-
Lower Triassic
-
Permian-Triassic boundary (10)
-
-
Middle Triassic (1)
-
Narrabeen Group (1)
-
-
-
Paleozoic
-
Carboniferous
-
Mississippian (1)
-
Pennsylvanian (1)
-
Upper Carboniferous
-
Westphalian (1)
-
-
-
Devonian
-
Middle Devonian
-
Eifelian (1)
-
-
-
Ordovician
-
Upper Ordovician
-
Hirnantian (1)
-
Juniata Formation (2)
-
Katian (1)
-
-
-
Permian
-
Ecca Group (1)
-
Guadalupian (1)
-
Illawarra Coal Measures (1)
-
Lower Permian (1)
-
Maokou Formation (1)
-
Middle Permian (1)
-
Newcastle Coal Measures (1)
-
Upper Permian
-
Permian-Triassic boundary (10)
-
-
-
Silurian
-
Upper Silurian
-
Bloomsburg Formation (1)
-
-
-
upper Paleozoic
-
Dwyka Formation (1)
-
-
-
Phanerozoic (1)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Lewisian (1)
-
Neoproterozoic
-
Ediacaran
-
Wonoka Formation (1)
-
-
Marinoan (1)
-
Vendian (4)
-
-
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
andesites (1)
-
basalts
-
flood basalts (1)
-
trap rocks (1)
-
-
pyroclastics
-
ash-flow tuff (1)
-
-
rhyodacites (1)
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
impactites (1)
-
-
turbidite (1)
-
-
meteorites
-
meteorites (1)
-
-
minerals
-
carbonates (3)
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
sheet silicates
-
clay minerals (1)
-
illite (1)
-
serpentine group
-
berthierine (1)
-
-
-
-
sulfates
-
barite (2)
-
gypsum (1)
-
-
sulfides
-
pyrite (1)
-
-
-
Primary terms
-
absolute age (4)
-
Africa
-
East Africa
-
Kenya
-
Fort Ternan Kenya (1)
-
-
Tanzania (1)
-
-
Sahara (1)
-
Southern Africa
-
Karoo Basin (3)
-
Namibia (1)
-
South Africa
-
Cape Province region (1)
-
Western Cape Province South Africa (1)
-
-
-
-
Antarctica
-
Antarctic ice sheet (1)
-
Transantarctic Mountains
-
Beardmore Glacier (1)
-
Coalsack Bluff (1)
-
-
Victoria Land
-
Allan Hills (2)
-
-
-
Asia
-
Far East
-
China
-
Gansu China (2)
-
Sichuan Basin (1)
-
Xizang China (1)
-
Yangtze Platform (1)
-
-
-
Indian Peninsula
-
India
-
Himachal Pradesh India (1)
-
-
Pakistan (1)
-
-
Siberia (1)
-
Tibetan Plateau (1)
-
-
atmosphere (1)
-
Australasia
-
Australia
-
New South Wales Australia (3)
-
South Australia (3)
-
Tasmania Australia (1)
-
Victoria Australia (1)
-
Western Australia
-
Canning Basin (1)
-
-
-
New Zealand (1)
-
-
bibliography (1)
-
biogeography (2)
-
Canada
-
Eastern Canada
-
Newfoundland and Labrador
-
Newfoundland (3)
-
-
-
Western Canada
-
British Columbia (1)
-
-
-
carbon
-
C-13/C-12 (10)
-
organic carbon (2)
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
Tertiary
-
Arikaree Group (2)
-
John Day Formation (2)
-
lower Tertiary (2)
-
Neogene
-
Miocene
-
lower Miocene (1)
-
middle Miocene (3)
-
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
Clarno Formation (1)
-
lower Eocene
-
Willwood Formation (1)
-
-
Subathu Formation (1)
-
upper Eocene (3)
-
-
Flagstaff Formation (1)
-
Oligocene
-
Brule Formation (1)
-
lower Oligocene (1)
-
upper Oligocene (1)
-
-
Paleocene
-
lower Paleocene
-
K-T boundary (1)
-
-
Tullock Member (2)
-
upper Paleocene (1)
-
-
Paleocene-Eocene Thermal Maximum (1)
-
White River Group (2)
-
-
-
-
Central America
-
Panama
-
Panama Canal Zone (1)
-
-
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Amphibia
-
Labyrinthodontia (1)
-
-
Mammalia (5)
-
Reptilia
-
Synapsida
-
Therapsida
-
Dicynodontia
-
Lystrosaurus (1)
-
-
-
-
-
-
-
-
clay mineralogy (1)
-
climate change (11)
-
continental drift (1)
-
data processing (1)
-
diagenesis (1)
-
Europe
-
Western Europe
-
United Kingdom
-
Great Britain
-
Scotland (1)
-
-
-
-
-
fungi (1)
-
geochemistry (8)
-
glacial geology (1)
-
ichnofossils (5)
-
igneous rocks
-
volcanic rocks
-
andesites (1)
-
basalts
-
flood basalts (1)
-
trap rocks (1)
-
-
pyroclastics
-
ash-flow tuff (1)
-
-
rhyodacites (1)
-
-
-
Indian Ocean (1)
-
intrusions (1)
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Insecta
-
Pterygota
-
Neoptera
-
Endopterygota
-
Coleoptera (1)
-
Hymenoptera (1)
-
-
-
-
-
Myriapoda (1)
-
-
-
Cnidaria (1)
-
Mollusca
-
Gastropoda (2)
-
-
Protista
-
Foraminifera (3)
-
Radiolaria (1)
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (10)
-
O-18/O-16 (4)
-
Sr-87/Sr-86 (1)
-
-
-
lichens (3)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Hell Creek Formation (2)
-
K-T boundary (1)
-
-
-
Triassic
-
Lower Triassic
-
Permian-Triassic boundary (10)
-
-
Middle Triassic (1)
-
Narrabeen Group (1)
-
-
-
metal ores
-
aluminum ores (1)
-
iron ores (1)
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
aluminum (1)
-
germanium (1)
-
iron (1)
-
platinum group
-
iridium (1)
-
-
-
metamorphic rocks
-
impactites (1)
-
-
metamorphism (2)
-
metasomatism (1)
-
meteorites (1)
-
mineral exploration (1)
-
nodules (1)
-
North America
-
Appalachians
-
Northern Appalachians (1)
-
-
Great Plains (2)
-
-
oxygen
-
O-18/O-16 (4)
-
-
paleobotany (1)
-
paleoclimatology (26)
-
paleoecology (18)
-
paleogeography (11)
-
paleomagnetism (3)
-
paleontology (3)
-
Paleozoic
-
Carboniferous
-
Mississippian (1)
-
Pennsylvanian (1)
-
Upper Carboniferous
-
Westphalian (1)
-
-
-
Devonian
-
Middle Devonian
-
Eifelian (1)
-
-
-
Ordovician
-
Upper Ordovician
-
Hirnantian (1)
-
Juniata Formation (2)
-
Katian (1)
-
-
-
Permian
-
Ecca Group (1)
-
Guadalupian (1)
-
Illawarra Coal Measures (1)
-
Lower Permian (1)
-
Maokou Formation (1)
-
Middle Permian (1)
-
Newcastle Coal Measures (1)
-
Upper Permian
-
Permian-Triassic boundary (10)
-
-
-
Silurian
-
Upper Silurian
-
Bloomsburg Formation (1)
-
-
-
upper Paleozoic
-
Dwyka Formation (1)
-
-
-
palynomorphs (5)
-
permafrost (1)
-
Phanerozoic (1)
-
Plantae
-
algae (1)
-
Pteridophyta
-
Lycopsida (2)
-
Sphenopsida (1)
-
-
Spermatophyta
-
Angiospermae
-
Dicotyledoneae (2)
-
Monocotyledoneae
-
Gramineae (3)
-
-
-
Gymnospermae
-
Cycadales (1)
-
Ginkgoales
-
Ginkgo (1)
-
-
Glossopteridales
-
Gangamopteris (1)
-
Glossopteris
-
Glossopteris flora (1)
-
-
-
-
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Lewisian (1)
-
Neoproterozoic
-
Ediacaran
-
Wonoka Formation (1)
-
-
Marinoan (1)
-
Vendian (4)
-
-
-
-
-
problematic fossils (4)
-
sea water (1)
-
sea-level changes (3)
-
sedimentary petrology (1)
-
sedimentary rocks
-
bauxite (2)
-
carbonate rocks
-
dolostone (1)
-
limestone (1)
-
-
chemically precipitated rocks
-
ironstone (1)
-
-
clastic rocks
-
claystone (3)
-
red beds (1)
-
shale (1)
-
tillite (2)
-
-
coal (6)
-
-
sedimentary structures
-
bedding plane irregularities
-
tool marks (1)
-
-
biogenic structures
-
algal structures (1)
-
bioturbation (1)
-
stromatolites (1)
-
-
planar bedding structures
-
cross-bedding (1)
-
laminations (3)
-
varves (1)
-
-
secondary structures
-
concretions (5)
-
-
seismites (1)
-
-
sedimentation (4)
-
sediments
-
clastic sediments
-
loess (2)
-
-
peat (2)
-
-
silicon (1)
-
soils
-
Alfisols (1)
-
Entisols (1)
-
Inceptisols (2)
-
laterites (1)
-
Mollisols (2)
-
Ultisols (2)
-
-
stratigraphy (2)
-
tectonics (2)
-
thallophytes (2)
-
United States
-
Kansas (1)
-
Maryland (1)
-
Montana
-
McCone County Montana (2)
-
-
Nebraska (3)
-
New Mexico (1)
-
New York (1)
-
Oregon
-
Crook County Oregon (1)
-
Grant County Oregon (1)
-
Jefferson County Oregon (1)
-
Lane County Oregon (1)
-
Wasco County Oregon (1)
-
Wheeler County Oregon
-
Clarno Oregon (1)
-
-
-
Pennsylvania
-
Centre County Pennsylvania (1)
-
Mifflin County Pennsylvania (1)
-
-
South Dakota
-
Badlands National Park (3)
-
Pennington County South Dakota (2)
-
-
Tennessee (1)
-
Texas
-
Knox County Texas (1)
-
-
Utah
-
Sanpete County Utah (1)
-
-
Washington
-
Franklin County Washington (1)
-
-
-
weathering (9)
-
-
rock formations
-
Emeishan Basalts (2)
-
Fort Union Formation (1)
-
Karoo Supergroup (1)
-
North Horn Formation (1)
-
-
sedimentary rocks
-
caliche (1)
-
contourite (1)
-
sedimentary rocks
-
bauxite (2)
-
carbonate rocks
-
dolostone (1)
-
limestone (1)
-
-
chemically precipitated rocks
-
ironstone (1)
-
-
clastic rocks
-
claystone (3)
-
red beds (1)
-
shale (1)
-
tillite (2)
-
-
coal (6)
-
-
tempestite (1)
-
turbidite (1)
-
volcaniclastics (1)
-
-
sedimentary structures
-
burrows (3)
-
casts (1)
-
sedimentary structures
-
bedding plane irregularities
-
tool marks (1)
-
-
biogenic structures
-
algal structures (1)
-
bioturbation (1)
-
stromatolites (1)
-
-
planar bedding structures
-
cross-bedding (1)
-
laminations (3)
-
varves (1)
-
-
secondary structures
-
concretions (5)
-
-
seismites (1)
-
-
tracks (1)
-
-
sediments
-
contourite (1)
-
sediments
-
clastic sediments
-
loess (2)
-
-
peat (2)
-
-
tempestite (1)
-
turbidite (1)
-
volcaniclastics (1)
-
-
soils
-
Oxisols (1)
-
paleosols (45)
-
soils
-
Alfisols (1)
-
Entisols (1)
-
Inceptisols (2)
-
laterites (1)
-
Mollisols (2)
-
Ultisols (2)
-
-
Pedostratigraphic age model for Devonian red beds of NW China
Sea-level fluctuations in the late Middle Permian estimated from palaeosols of the Sichuan Basin, SW China
Advent of Strong South Asian Monsoon by 20 Million Years Ago
COMMENT TO LIU (2016) “FRAMBOIDAL PYRITE SHROUD CONFIRMS THE ‘DEATH MASK' MODEL FOR MOLDIC PRESERVATION OF EDIACARAN SOFT-BODIED ORGANISMS”
Exceptional preservation of soft-bodied Ediacara Biota promoted by silica-rich oceans: COMMENT
Late Ordovician Glaciation Initiated by Early Land Plant Evolution and Punctuated by Greenhouse Mass Extinctions
Silurian vegetation stature and density inferred from fossil soils and plants in Pennsylvania, USA
Paleosols and paleoenvironments of early Mars
Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction
Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland
How well do fossil assemblages of the Ediacara Biota tell time?: COMMENT
Affirming life aquatic for the Ediacara biota in China and Australia: COMMENT
Evidence for Cnidaria-like behavior in ca. 560 Ma Ediacaran Aspidella : COMMENT
Abstract The concept of paleosols dates back to the eighteenth century discovery of buried soils, geological unconformities, and fossil forests, but the term paleopedology was first coined by Boris B. Polynov in 1927. During the mid-twentieth century in the United States, paleopedology became mired in debates about recognition of Quaternary paleosols, and in controversy over the red-bed problem. By the 1980s, a new generation of researchers envisaged red beds as sequences of paleosols and as important archives of paleoenvironmental change. At about the same time, Precambrian geochemists began sophisticated analyses of paleosols at major unconformities as a guide to the long history of atmospheric oxidation. It is now widely acknowledged that evidence from paleosols can inform studies of stratigraphy, sedimentology, paleoclimate, paleoecology, global change, and astrobiology. For the future, there is much additional potential for what is here termed “nomopedology,” using pedotransfer functions derived from past behavior of soils to predict global and local change in the future. Past greenhouse crises have been of varied magnitude, and paleosols reveal both levels of atmospheric CO 2 and degree of concomitant paleoclimatic change. Another future development is “astropedology”, completing a history of soils on early Earth, on other planetary bodies such as the Moon and Mars, and within meteorites formed on planetismals during the origin of the solar system.
Early Cambrian Humid, Tropical, Coastal Paleosols from Montana, USA
Abstract A putative Precambrian paleosol mapped at the unconformity between the Cambrian Flathead Sandstone and Belt Supergroup at Fishtrap Lake, Montana, was found instead to be a succession of paleosols forming the basal portion of the Flathead Sandstone. Early Cambrian age of these paleosols comes from stratigraphic ranges of associated marine trace fossils: Bergaueria hemispherica, Didymaulichnus lyelli, Torrowangea sp. indet., and Manykodes pedum . Instead of a single strongly developed paleosol on top of the Belt Supergroup with a smooth geochemical depth function, five successive geochemical and petrographic spikes were interpreted as so many individual paleosols within a short sedimentary sequence of red beds, overlying brecciated and little-weathered Belt Supergroup. The most weathered intervals (paleosol A horizons) are purple-red in color (Munsell weak red, 7.5R 4/2) and massive to hackly, whereas intervening marine siltstones are planar bedded and purple-gray (Munsell dark reddish gray, 7.5R 4/1). The massive to hackly appearance comes from blocky to platy peds defined by argillans and is also the result of pervasive bioturbation of two distinct kinds: drab-haloed filament traces and ferruginized-organic filaments. In thin section, the filaments are circular as well as elliptical and elongate and of presumed microbial origin. The filament-rich (A) horizons are also defined by magnetic susceptibility and show petrographic evidence of significant weathering (depleted abundance of rock fragments, feldspar, and mica compared with lower horizons). Additional evidence of weathering comes from chemical analyses showing net loss of mass and weatherable elements within a profile. These lines of evidence indicate that Montana estuarine landscapes during the earliest Cambrian were colonized by filamentous organisms in a tropical humid paleoclimate, rather than the frigid conditions documented elsewhere during the Late Ediacaran and Early Cambrian.
The terrestrial Permian–Triassic boundary event bed is a nonevent: COMMENT
Abstract Microbial earths are communities of microscopic organisms living in well-drained soil. Unlike aquatic microbial mats and stromatolites, microbial earths are sheltered from ultraviolet radiation, desiccation, and other surficial hazards within soil cracks and grain interstices. Currently, such ecosystems are best known in small areas of unusually cold, hot, or saline soils unfavorable to multicellular plants and animals. During the Precambrian, microbial earths may have been more widespread, but few examples have been reported. This review outlines a variety of features of modern microbial earths that can be used to distinguish them from aquatic microbial mats and stromatolites in the fossil record. Microbial earths have vertically oriented organisms intimately admixed with minerals of the soil, whereas microbial mats are laminated and detachable from their mineral substrate as flakes, skeins, and rollups. Microbial earths have irregular relief, healed desiccation cracks, and pressure ridges, whereas microbial mats have flexuous, striated domes, and tufts. Microbial earths form deep soil profiles with downward variations in oxidation, clay abundance, and replacive nodular subsurface horizons, whereas microbial mats form as caps to unweathered, chemically reduced sedimentary layers. Microbial earths develop increasingly differentiated soil profiles through time, whereas microbial mats build upward in laminar to domed increments. Microbial earths are found in nonmarine sedimentary facies, whereas microbial mats form in lacustrine, floodplain, and marine sedimentary facies. Microbial mats and stromatolites are known back to the oldest suitably preserved sedimentary rocks in the 3458 Ma Apex Chert and 3430 Ma Strelley Pool Formation (respectively) of the Pilbara region of Western Australia. The geological antiquity of microbial earths extends back to 2760 Ma in the Mount Roe paleosol of the Hamersley Group near Whim Creek, Western Australia.