- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
United States
-
Virginia
-
Louisa County Virginia (1)
-
-
-
-
Primary terms
-
earthquakes (1)
-
ground water (1)
-
United States
-
Virginia
-
Louisa County Virginia (1)
-
-
-
Widespread groundwater-level offsets caused by the M w 5.8 Mineral, Virginia, earthquake of 23 August 2011
Groundwater levels were offset in bedrock observation wells, measured by the U.S. Geological Survey or others, as far as 553 km from the M w 5.8 Mineral, Virginia (USA), earthquake on 23 August 2011. Water levels dropped as much as 0.47 m in 34 wells and rose as much as 0.15 m in 12 others. In some wells, which are as much as 213 m deep, the water levels recovered from these deviations in hours to days, but in others the water-level offset may have persisted. The groundwater-level offsets occurred in locations where the earthquake was at least weakly felt, and the maximum water-level excursion increased with felt intensity, independent of epicentral distance. Coseismic static strain from the earthquake was too small and localized to have contributed significantly to the groundwater-level offsets. The relation with intensity is consistent with ground motion from seismic waves leading to the water-level offsets. Examination of the hydrographs indicates that short-period ground motion most likely affected the permeability of the bedrock aquifers monitored by the wells.