Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Southern Europe
-
Iberian Peninsula
-
Spain (1)
-
-
-
-
-
geologic age
-
Paleozoic (1)
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites
-
leucogranite (1)
-
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
granulites (1)
-
-
-
minerals
-
silicates
-
orthosilicates
-
sorosilicates
-
lawsonite (1)
-
-
-
-
-
Primary terms
-
crystal growth (1)
-
Europe
-
Southern Europe
-
Iberian Peninsula
-
Spain (1)
-
-
-
-
igneous rocks
-
plutonic rocks
-
granites
-
leucogranite (1)
-
-
-
-
magmas (1)
-
metamorphic rocks
-
granulites (1)
-
-
metamorphism (1)
-
Paleozoic (1)
-
GeoRef Categories
Era and Period
Book Series
Date
Availability
Composition and evolution of the lithospheric mantle in central Spain: inferences from peridotite xenoliths from the Cenozoic Calatrava volcanic field Available to Purchase
Abstract Spinel lherzolite xenoliths from the Cenozoic Calatrava volcanic field provide a sampling of the lithospheric mantle of central Spain. The xenoliths are estimated to originate from depths of 35–50 km. Trace element content of clinopyroxene and Cr-number in spinel indicate low degrees of partial melting (≤ 5%) of the xenoliths. Although a major element whole-rock model suggests wider degrees of melting, the Calatrava peridotite chemistry indicates a moderately fertile mantle beneath central Spain. Calatrava peridotite xenoliths bear evidence for interaction with two different metasomatic agents. The enrichment in LREE(light rare earth element), Th, U and Pb, and the negative anomalies in Nb–Ta in clinopyroxene and amphibole from xenoliths of El Aprisco, indicate that the metasomatic agent was probably a subduction-related melt, whereas the enrichment in MREE in clinopyroxene from xenoliths of the Cerro Pelado centre suggests an alkaline melt similar to the host undersaturated magmas. These metasomatic agents are also consistent with the chemistry of interstitial glasses found in xenoliths of the two volcanic centres. Differences in metasomatism but also in mantle composition is supported by Sr–Nd whole-rock data which show a more radiogenic nature for Sr isotopes of samples from the El Aprisco centre ( 87 Sr/ 86 Sr ratios of 0.7035–0.7044 instead of 0.7032–0.7037 for samples from Cerro Pelado). The timing of the subduction-related metasomatic stage is unconstrained, although the Calatrava intraplate volcanism intrudes an old Variscan lithospheric section reworked during the converging plate system affecting SE Iberia in the Tertiary. The presence of wehrlite types within the Calatrava peridotite xenoliths is here interpreted as a reaction of host lherzolites with silica-undersaturated silicate melts that could be related to the Calatrava alkaline magmatism. The Sr–Nd isotopic composition of Calatrava peridotites plot within the European athenospheric reservoir(EAR) mantle, these values represent more enriched signatures than those found in the other Spanish Cenozoic alkaline province of Olot.
Heterogeneous metasomatism in cumulate xenoliths from the Spanish Central System: Implications for percolative fractional crystallization of lamprophyric melts Available to Purchase
Abstract The alkaline lamprophyres and diabases from the Spanish Central System carry a heterogeneous suite of xenoliths including a group of highly altered ultramafic pyroxenites that contain Cr–Mg-rich high- T hydrous minerals (Ti-phlogopite and pargasitic to kaersutitic amphibole), indicative of modal metasomatism. The trace element mineral compositions of these xenoliths show three patterns: type A xenoliths, with light rare earth element enriched clinopyroxenes with high field strength element (HFSE) negative anomalies; type B xenoliths, with clinopyroxenes and amphiboles with high incompatible trace element contents (large ion lithophile elements (LILE), HFSE and REE); type C xenoliths, with relatively REE- and HFSE-poor clinopyroxenes and amphiboles. These metasomatic signatures suggest the involvement of three different metasomatic agents: carbonate, silicate and hydrous fluids or melts, respectively. These agents could have been derived from the progressive differentiation of a CO 2 –H 2 O-rich highly alkaline magma, genetically related to the Late Permian alkaline magmatism. Because of the original sub-alkaline nature of the pyroxenite xenoliths, they might have been formed originally as pyroxene-rich cumulates associated with underplated Hercynian calc-alkaline basic magmas. Metasomatism as a result of the infiltration of alkaline magmas within these cumulates might explain the relatively high radiogenic Nd composition of the altered ultramafic xenoliths.
Eclogite facies relics in metabasites from the Sierra de Guadarrama (Spanish Central System): P-T estimations and implications for the Hercynian evolution Available to Purchase
The Layos Granite, Hercynian Complex of Toledo (Spain): an example of parautochthonous restite-rich granite in a granulitic area Available to Purchase
The Layos Granite forms elongated massifs within the Toledo Complex of central Spain. It is late-tectonic with respect to the F2 regional phase and simultaneous with the metamorphic peak of the region, which reached a maximum temperature of 800–850°C and pressures of 400–600 MPa. Field studies indicate that this intrusion belongs to the “regional migmatite terrane granite” type. This granite is typically interlayered with sill-like veins and elongated bodies of cordierite/garnet-bearing leucogranites. Enclaves are widespread and comprise restitic types (quartz lumps, biotite, cordierite and sillimanite-rich enclaves) and refractory metamorphic country-rocks including orthogneisses, amphibolites, quartzites, conglomerates and calc-silicate rocks. These granites vary from quartz-rich tonalites to melamonzogranites and define a S-type trend on a QAP plot. Cordierite and biotite are the mafic phases of the rocks. The particularly high percentage of cordierite (10%–30%) varies inversely with the silica content. Sillimanite is a common accessory mineral, always included in cordierite, suggesting a restitic origin. The mineral chemistry of the Layos Granite is similar to that of the leucogranites and country-rock peraluminous granulites (kinzigites), indicating a close approach to equilibrium. The uniform composition of plagioclase (An 25 ), the high albitic content of the K-feldspar, the continuous variation in the Fe/Mg ratios of the mafic minerals, and the high Ti content of the biotites (2.5–6.5%) suggest a genetic relationship. Geochemically, the Layos Granite is strongly peraluminous. Normative corundum lies between 4% and 10% and varies inversely with increase in SiO 2 . The CaO content is typically low (<1.25%) and shows little variation; similarly the LILE show a limited range. On many variation diagrams, linear trends from peraluminous granulites to the Layos Granite and associated leucogranite can be observed. The chemical characteristics argue against an igneous fractionation or fusion mechanism for the diversification of the Layos Granite. A restite unmixing model between a granulitic pole (represented by the granulites of the Toledo Complex) and a minimum melt (leucogranites) could explain the main chemical variation of the Layos Granite. Melting of a pelitic protolith under anhydrous conditions (biotite dehydration melting) could lead to minimum-temperature melt compositions and a strongly peraluminous residuum. For the most mafic granites (61–63% SiO 2 ), it is estimated that the trapped restite component must have been around 65%. This high proportion of restite is close to the estimated rheological critical melt fraction, but field evidence suggests that this critical value has been exceeded. This high restite component implies high viscosity of the melt which, together with the anhydrous assemblage of the Layos Granite and the associated leucogranites, indicates H 2 O-undersaturated melting conditions. Under such conditions, the high viscosity magma (crystal-liquid mush) had a restricted movement capacity, leading to the development of parautochthonous plutonic bodies.