Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Australasia
-
New Zealand
-
Coromandel Peninsula (1)
-
Torlesse Terrane (1)
-
-
-
Black Hills (1)
-
Canada
-
Eastern Canada
-
Baffin Island (1)
-
Maritime Provinces
-
New Brunswick
-
Gloucester County New Brunswick
-
Bathurst mining district (1)
-
-
-
-
Ontario
-
Ottawa Ontario (1)
-
-
Quebec
-
Beauce County Quebec (1)
-
Sherbrooke County Quebec (1)
-
Thetford Mines (1)
-
-
-
Nunavut
-
Baffin Island (1)
-
-
Stikinia Terrane (1)
-
Western Canada
-
Alberta (1)
-
British Columbia (2)
-
Canadian Cordillera (1)
-
Northwest Territories
-
Great Slave Lake (1)
-
Yellowknife Northwest Territories (1)
-
-
-
-
Cascade Range (2)
-
East Pacific Ocean Islands
-
Hawaii (1)
-
-
North America
-
Appalachians
-
Blue Ridge Mountains (1)
-
-
Basin and Range Province
-
Great Basin (2)
-
-
Canadian Shield
-
Churchill Province
-
Hearne Province (1)
-
Rae Province (1)
-
-
Slave Province (4)
-
Superior Province (2)
-
-
North American Cordillera
-
Canadian Cordillera (1)
-
-
Purcell Mountains (1)
-
Rocky Mountains
-
U. S. Rocky Mountains
-
Absaroka Range
-
Beartooth Mountains (1)
-
-
Tobacco Root Mountains (1)
-
Wasatch Range (1)
-
-
-
-
North Island (1)
-
Oceania
-
Polynesia
-
Hawaii (1)
-
-
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific
-
Bowie Seamount (2)
-
Loihi Seamount (1)
-
-
-
North Pacific
-
Northeast Pacific
-
Bowie Seamount (2)
-
Loihi Seamount (1)
-
-
-
South Pacific (1)
-
-
Sierra Nevada (3)
-
Taranaki Basin (1)
-
United States
-
Blue Ridge Mountains (1)
-
California
-
Mono County California (1)
-
Northern California (1)
-
Shasta County California
-
Lassen Peak (1)
-
-
-
Great Basin (2)
-
Hawaii (1)
-
Idaho (1)
-
Lake Tahoe (1)
-
Montana
-
Madison County Montana
-
Tobacco Root Mountains (1)
-
-
-
Nevada (4)
-
New York
-
Adirondack Mountains (1)
-
-
U. S. Rocky Mountains
-
Absaroka Range
-
Beartooth Mountains (1)
-
-
Tobacco Root Mountains (1)
-
Wasatch Range (1)
-
-
Utah
-
Great Salt Lake (1)
-
Salt Lake County Utah
-
Salt Lake City Utah (1)
-
-
-
Virginia (1)
-
Walker Lane (1)
-
Washington (1)
-
Wyoming (2)
-
Wyoming Province (2)
-
-
-
commodities
-
diamond deposits (1)
-
metal ores
-
gold ores (2)
-
lead ores (1)
-
zinc ores (1)
-
-
mineral deposits, genesis (5)
-
mineral exploration (2)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
chemical ratios (1)
-
incompatible elements (1)
-
isotope ratios (12)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (3)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (3)
-
Rb-87/Sr-86 (1)
-
Sm-147/Nd-144 (2)
-
-
stable isotopes
-
C-13/C-12 (1)
-
Hf-177/Hf-176 (1)
-
Nd-144/Nd-143 (10)
-
O-18/O-16 (2)
-
Pb-206/Pb-204 (3)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (3)
-
Rb-87/Sr-86 (1)
-
S-34/S-32 (1)
-
Sm-147/Nd-144 (2)
-
Sr-87/Sr-86 (8)
-
-
-
metals
-
alkali metals
-
rubidium
-
Rb-87/Sr-86 (1)
-
-
-
alkaline earth metals
-
strontium
-
Rb-87/Sr-86 (1)
-
Sr-87/Sr-86 (8)
-
-
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
lead
-
Pb-206/Pb-204 (3)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (3)
-
-
niobium (1)
-
precious metals (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (10)
-
Sm-147/Nd-144 (2)
-
-
samarium
-
Sm-147/Nd-144 (2)
-
-
-
-
oxygen
-
O-18/O-16 (2)
-
-
sulfur
-
S-34/S-32 (1)
-
-
trace metals (1)
-
-
fossils
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Reptilia
-
Diapsida
-
Archosauria
-
dinosaurs
-
Ornithischia (1)
-
Saurischia
-
Theropoda
-
Coelurosauria
-
Tyrannosauridae (1)
-
-
-
-
-
-
-
-
-
-
-
-
geochronology methods
-
Ar/Ar (1)
-
Nd/Nd (2)
-
paleomagnetism (2)
-
Sm/Nd (1)
-
U/Pb (4)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
Tertiary
-
Neogene
-
Miocene
-
middle Miocene (1)
-
upper Miocene (1)
-
-
Pliocene (1)
-
-
Paleogene
-
Eocene (1)
-
-
-
-
Lake Bonneville (1)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Oldman Formation (1)
-
-
-
-
Paleozoic
-
Cambrian (1)
-
Devonian (1)
-
Ordovician
-
Lower Ordovician (1)
-
Middle Ordovician (1)
-
Tetagouche Group (1)
-
-
-
Precambrian
-
Archean
-
Yellowknife Group (1)
-
-
Catoctin Formation (1)
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic (2)
-
Neoproterozoic
-
Tonian (1)
-
-
Paleoproterozoic (5)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
anorthosite (1)
-
diabase (2)
-
gabbros (1)
-
granites (1)
-
lamprophyres
-
minette (1)
-
-
-
volcanic rocks
-
basalts
-
alkali basalts
-
hawaiite (1)
-
mugearite (1)
-
-
mid-ocean ridge basalts (1)
-
-
rhyolites (1)
-
trachyandesites (1)
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
gneisses (1)
-
metaigneous rocks
-
metabasalt (1)
-
metagabbro (1)
-
-
metasedimentary rocks (2)
-
metavolcanic rocks (3)
-
-
-
minerals
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (5)
-
-
-
-
sheet silicates
-
mica group
-
muscovite (1)
-
-
-
-
sulfates
-
barite (1)
-
-
sulfides
-
chalcopyrite (1)
-
galena (1)
-
pyrrhotite (1)
-
wurtzite (1)
-
-
-
Primary terms
-
absolute age (8)
-
Australasia
-
New Zealand
-
Coromandel Peninsula (1)
-
Torlesse Terrane (1)
-
-
-
biogeography (1)
-
Canada
-
Eastern Canada
-
Baffin Island (1)
-
Maritime Provinces
-
New Brunswick
-
Gloucester County New Brunswick
-
Bathurst mining district (1)
-
-
-
-
Ontario
-
Ottawa Ontario (1)
-
-
Quebec
-
Beauce County Quebec (1)
-
Sherbrooke County Quebec (1)
-
Thetford Mines (1)
-
-
-
Nunavut
-
Baffin Island (1)
-
-
Stikinia Terrane (1)
-
Western Canada
-
Alberta (1)
-
British Columbia (2)
-
Canadian Cordillera (1)
-
Northwest Territories
-
Great Slave Lake (1)
-
Yellowknife Northwest Territories (1)
-
-
-
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
Tertiary
-
Neogene
-
Miocene
-
middle Miocene (1)
-
upper Miocene (1)
-
-
Pliocene (1)
-
-
Paleogene
-
Eocene (1)
-
-
-
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Reptilia
-
Diapsida
-
Archosauria
-
dinosaurs
-
Ornithischia (1)
-
Saurischia
-
Theropoda
-
Coelurosauria
-
Tyrannosauridae (1)
-
-
-
-
-
-
-
-
-
-
-
crust (1)
-
deformation (2)
-
diamond deposits (1)
-
earthquakes (1)
-
East Pacific Ocean Islands
-
Hawaii (1)
-
-
ecology (1)
-
faults (2)
-
folds (1)
-
geochemistry (13)
-
ground water (1)
-
igneous rocks
-
plutonic rocks
-
anorthosite (1)
-
diabase (2)
-
gabbros (1)
-
granites (1)
-
lamprophyres
-
minette (1)
-
-
-
volcanic rocks
-
basalts
-
alkali basalts
-
hawaiite (1)
-
mugearite (1)
-
-
mid-ocean ridge basalts (1)
-
-
rhyolites (1)
-
trachyandesites (1)
-
-
-
inclusions (1)
-
intrusions (4)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (3)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (3)
-
Rb-87/Sr-86 (1)
-
Sm-147/Nd-144 (2)
-
-
stable isotopes
-
C-13/C-12 (1)
-
Hf-177/Hf-176 (1)
-
Nd-144/Nd-143 (10)
-
O-18/O-16 (2)
-
Pb-206/Pb-204 (3)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (3)
-
Rb-87/Sr-86 (1)
-
S-34/S-32 (1)
-
Sm-147/Nd-144 (2)
-
Sr-87/Sr-86 (8)
-
-
-
lava (5)
-
magmas (7)
-
mantle (8)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Oldman Formation (1)
-
-
-
-
metal ores
-
gold ores (2)
-
lead ores (1)
-
zinc ores (1)
-
-
metals
-
alkali metals
-
rubidium
-
Rb-87/Sr-86 (1)
-
-
-
alkaline earth metals
-
strontium
-
Rb-87/Sr-86 (1)
-
Sr-87/Sr-86 (8)
-
-
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
lead
-
Pb-206/Pb-204 (3)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (3)
-
-
niobium (1)
-
precious metals (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (10)
-
Sm-147/Nd-144 (2)
-
-
samarium
-
Sm-147/Nd-144 (2)
-
-
-
-
metamorphic rocks
-
gneisses (1)
-
metaigneous rocks
-
metabasalt (1)
-
metagabbro (1)
-
-
metasedimentary rocks (2)
-
metavolcanic rocks (3)
-
-
metasomatism (4)
-
mineral deposits, genesis (5)
-
mineral exploration (2)
-
North America
-
Appalachians
-
Blue Ridge Mountains (1)
-
-
Basin and Range Province
-
Great Basin (2)
-
-
Canadian Shield
-
Churchill Province
-
Hearne Province (1)
-
Rae Province (1)
-
-
Slave Province (4)
-
Superior Province (2)
-
-
North American Cordillera
-
Canadian Cordillera (1)
-
-
Purcell Mountains (1)
-
Rocky Mountains
-
U. S. Rocky Mountains
-
Absaroka Range
-
Beartooth Mountains (1)
-
-
Tobacco Root Mountains (1)
-
Wasatch Range (1)
-
-
-
-
ocean floors (2)
-
Oceania
-
Polynesia
-
Hawaii (1)
-
-
-
oceanography (1)
-
orogeny (2)
-
oxygen
-
O-18/O-16 (2)
-
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific
-
Bowie Seamount (2)
-
Loihi Seamount (1)
-
-
-
North Pacific
-
Northeast Pacific
-
Bowie Seamount (2)
-
Loihi Seamount (1)
-
-
-
South Pacific (1)
-
-
paleoecology (1)
-
paleogeography (2)
-
paleomagnetism (2)
-
Paleozoic
-
Cambrian (1)
-
Devonian (1)
-
Ordovician
-
Lower Ordovician (1)
-
Middle Ordovician (1)
-
Tetagouche Group (1)
-
-
-
plate tectonics (8)
-
Precambrian
-
Archean
-
Yellowknife Group (1)
-
-
Catoctin Formation (1)
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic (2)
-
Neoproterozoic
-
Tonian (1)
-
-
Paleoproterozoic (5)
-
-
-
-
sea-floor spreading (1)
-
sedimentary structures (1)
-
sulfur
-
S-34/S-32 (1)
-
-
tectonics (6)
-
United States
-
Blue Ridge Mountains (1)
-
California
-
Mono County California (1)
-
Northern California (1)
-
Shasta County California
-
Lassen Peak (1)
-
-
-
Great Basin (2)
-
Hawaii (1)
-
Idaho (1)
-
Lake Tahoe (1)
-
Montana
-
Madison County Montana
-
Tobacco Root Mountains (1)
-
-
-
Nevada (4)
-
New York
-
Adirondack Mountains (1)
-
-
U. S. Rocky Mountains
-
Absaroka Range
-
Beartooth Mountains (1)
-
-
Tobacco Root Mountains (1)
-
Wasatch Range (1)
-
-
Utah
-
Great Salt Lake (1)
-
Salt Lake County Utah
-
Salt Lake City Utah (1)
-
-
-
Virginia (1)
-
Walker Lane (1)
-
Washington (1)
-
Wyoming (2)
-
Wyoming Province (2)
-
-
-
sedimentary structures
-
sedimentary structures (1)
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Geochemical transition from Miocene–Pliocene to Quaternary arc volcanism in the northern Sierra Nevada, California
ABSTRACT Miocene–Pliocene volcanism around Lake Tahoe, California/Nevada, USA, part of the Southern Ancestral Cascades arc, ceased at around 3 Ma as the southern edge of the subducting Juan de Fuca plate migrated north of the region. Post–3 Ma, arc volcanism continued north of Lake Tahoe, but modern subduction and arc volcanism now occur only north of the Lassen volcanic center. Miocene–Pliocene Tahoe arc lavas appear to include an older mantle source component that is not common in Quaternary Lassen arc rocks. The goal of this work was to investigate how magma sources and/or volcanic processes transitioned in the northern Sierra Nevada between Lake Tahoe and Lassen. The Sierra Nevada between Lake Tahoe and Lassen, or the North Sierra segment of the Ancestral Cascades, includes eroded remnants of Ancestral Cascades volcanic rocks, including lava flow complexes, intrusions, and landslide/debris-flow deposits. Lava samples from the North Sierra segment include calc-alkaline basalts to dacites, with rare rhyolites. All North Sierra segment lavas exhibit normalized incompatible-element patterns with negative Nb, Ta, and Ti anomalies and positive Pb, Sr, and Ba anomalies. The North Sierra segment is geochemically split into two parts: a northern group including lavas from the Susanville area, and a southern group consisting of arc rocks from the Portola, Sierraville, Henness Pass, and Sagehen areas. With the exception of the Sagehen area, the North Sierra segment shows little variation in radiogenic isotope ratios with SiO 2 , indicating that assimilation of crustal rocks was outweighed by liquid-crystal crystallization during magma evolution. Trace-element and isotopic ratios in mafic rocks of the northern group are more typical of Lassen area Quaternary volcanic rocks, whereas those of southern group mafic rocks are more typical of Miocene–Pliocene arc lavas of the Lake Tahoe area. The isotopic distinction between Lassen-like and Tahoe-like arc lavas is likely controlled by basement age and lithology, where Lassen-like magmas were derived largely by mantle wedge melting and Tahoe-like magmas were primarily partial melts of metasomatized Sierran lithospheric mantle. The Susanville area represents the “transition zone” between these two geochemically distinct primary magma sources.
Abstract Mid- to late-Miocene continental arc volcanism on the North Island of New Zealand is found in the Coromandel Peninsula, the Kiwitahi volcanic chain and the Taranaki Basin (Kora Volcano) offshore the western margin of the North Island. Coeval oceanic arc volcanism is also found along the offshore Colville Ridge/Kermadec Ridge north of New Zealand. This Pb–Sr–Nd–Hf isotopic study aims to evaluate mantle sources and potential crustal contaminants along these sections of the Miocene arc system. The Colville/Kermadec Ridge and Kora lavas have the lowest Sr (0.7029–0.7045) and highest Nd (0.51305–0.51292) ratios; the Coromandel and Kiwitahi lavas overlap (Sr = 0.704–0.706; Nd = 0.51268–0.51296). The Colville/Kermadec Ridge, Kora, and Coromandel/Kiwitahi rocks form three distinct arrays on Pb–Pb plots, all above the Northern Hemisphere Reference Line, but none trend towards local Mesozoic basement greywackes. Isotopic and trace element ratio variations suggest that subducted sediments are a component in Coromandel/Kiwitahi mafic lava sources. The younger, southern Kiwitahi lavas have a more depleted mantle source than that for the older, northern Kiwitahi chain. Evolved lavas commonly have interacted with Waipapa basement rocks. Kora rocks have compositions similar to those of back-arc lavas and have been emplaced as sills in a rift environment above a distinct subduction-modified mantle.
New biogeochemical insights into Mesozoic terrestrial paleoecology and evidence for omnivory in troodontid dinosaurs
Front Matter
Introduction
ABSTRACT On this field trip we visit three sites in the Salt Lake Valley, Utah, USA, where we examine the geomorphology of the Bonneville shoreline, the history of glaciation in the Wasatch Range, and shorezone geomorphology of Great Salt Lake. Stop 1 is at Steep Mountain bench, adjacent to Point of the Mountain in the Traverse Mountains, where the Bonneville shoreline is well developed and we can examine geomorphic evidence for the behavior of Lake Bonneville at its highest levels. At Stop 2 at the mouths of Little Cottonwood and Bells Canyons in the Wasatch Range, we examine geochronologic and geomorphic evidence for the interaction of mountain glaciers with Lake Bonneville. At the Great Salt Lake at Stop 3, we can examine modern processes and evidence of the Holocene history of the lake, and appreciate how Lake Bonneville and Great Salt Lake are two end members of a long-lived lacustrine system in one of the tectonically generated basins of the Great Basin.
Cambrian–Lower Ordovician of SW Quebec–NE New York
ABSTRACT The Ottawa aulacogen/graben on the NE US—Canadian (SW Quebec and eastern Ontario) border is a long ENE-trending structure formed with initial late Neo proterozoic rifting of the Rodinia supercontinent. This rifting formed the active spreading arms (New York Promontory and Quebec Reentrant) along the (presently) NE margin of the new Laurentia paleocontinent, with the Ottawa aulacogen commonly regarded as a failed arm of the rifting. However, no sediment accumulation in the aulacogen is recorded until the late early Cambrian subsidence of a SE- trending belt that includes the aulacogen and its extension, the Franklin Basin, in NW Vermont. Late early Cambrian marine onlap (Altona Formation) followed by more rapid late middle Cambrian subsidence and deposition of fluviatile arkoses (Covey Hill Formation of SW Quebec and Ausable Formation/Member of eastern New York) record rapid foundering of this “failed arm.” Subsequent deposition (latest middle Cambrian–Early Ordovician) in the Ottawa aulacogen produced a vertical succession of lithofacies that are fully comparable with those of the shelf of the New York Promontory. One of the greatest challenges in summarizing the geological history of the Ottawa aulacogen is the presence of a duplicate stratigraphic nomenclature with lithostratigraphic names changing as state and provincial borders are crossed. RÉSUMÉ L’aulacogène/graben d’Ottawa, situé sur la frontière entre le NE des États-Unis et le Canada (SW du Québec et est de l’Ontario), est une longue structure d’orientation ENE formée au Néoprotérozoïque tardif durant le rifting initial du supercontinent Rodinia. Ce rifting a aussi mené à la formation de segments à expansion active (promontoire de New York et réentrant de Québec) le long de la marge NE (coordonnées actuelles) du nouveau paléo-continent Laurentia, avec l’aulacogène d’Ottawa qui est généralement considéré comme un segment de rift avorté. Toutefois, aucune accumulation de sediments n’est documentée au sein de l’aulacogène avant la fin du Cambrien précoce, période durant laquelle une ceinture d’orientation SE, representée par l’aulacogène et son prolongement dans le bassin de Franklin vers le NW du Vermont, a subi une subsidence. La sedimentation marine de la fin du Cambrien précoce (Formation d’Altona) a été suivie d’une subsidence rapide à la fin du Cambrien moyen et de la déposition d’arkoses fluviatiles (Formation de Covey Hill dans le SW du Québec et la Formation/Membre d’Ausable dans l’est de l’état de New York) qui ont enregistré un affaissement rapide de ce “bras avorté.” La sédimentation subséquente (Cambrien moyen tardif–Ordovicien inférieur) au sein de l’aulacogène d’Ottawa a produit une succession verticale de lithofaciès qui sont comparables à ceux de la plate-forme du promontoire de New York. Un des principaux défis dans la synthèse de l’histoire géologique de l’aulacogène d’Ottawa demeure la duplication des termes stratigraphiques de part et d’autre des frontières interprovinciales et entre les différents états.
ABSTRACT This three-day field trip focuses on the stratigraphy and the structural characteristics of the late- and post-Taconian sedimentary basins of the southern Québec Appalachians, with a particular emphasis on N-to-S and W-to-E structural and lithological variations. In order to discuss various aspects of the regional structural evolution of these basins, we will visit a series of key outcrops following three sections, the Beauce/Thetford-Mines sections, the Sherbrooke section, and the Coaticook section. RÉSUMÉ Cette excursion de trois jours se concentre sur la stratigraphie et les caractéristiques structurales des bassins sédimentaires tardi- et post-Taconien des Appalaches du sud du Québec, en mettant l’accent sur les variations structurales et lithologiques du nord au sud et d’ouest en est. Afin de discuter des divers aspects de l’évolution structurale régionale de ces bassins sédimentaires, nous visiterons une série d’affleure ments clés en suivant trois sections, soient les sections de Beauce/Thetford-Mines, de Sherbrooke, et de Coaticook.
COVID-19 made for a highly unusual year as it affected almost every facet of life. The pandemic made gathering and visiting the field nearly impossible as we quarantined and moved into virtual spaces. Three groups submitted guides for publication during the height of the pandemic: two for trips that would have taken place during the GSA Annual Meeting in Montréal, Canada, and one from the Rocky Mountain Section Meeting in Provo, Utah, USA. Readers will enjoy these journeys to the Ottawa aulacogen/graben on the Northeast U.S.–Canadian border; the southern Québec Appalachians; and Lake Bonneville, the Wasatch Range, and Great Salt Lake in Utah.
Geochemical study of Cenozoic mafic volcanism in the west-central Great Basin, western Nevada, and the Ancestral Cascades Arc, California
Geochemical, isotopic, and U–Pb zircon study of the central and southern portions of the 780 Ma Gunbarrel Large Igneous Province in western Laurentia
Wyoming on the run—Toward final Paleoproterozoic assembly of Laurentia: REPLY
Wyoming on the run—Toward final Paleoproterozoic assembly of Laurentia
Parentage of Archean basement within a Paleoproterozoic orogen and implications for on-craton diamond preservation: Slave craton and Wopmay orogen, northwest Canada
Geochemistry, petrologic evolution, and ore deposits of the Miocene Bodie Hills Volcanic Field, California and Nevada
Constraints on the relationships between Paleoproterozoic intrusions and dyke swarms, East Arm of Great Slave Lake, N.W.T., Canada
Petrologic, tectonic, and metallogenic evolution of the southern segment of the ancestral Cascades magmatic arc, California and Nevada
Evidence for an enriched asthenospheric source for coronitic metagabbros in the Adirondack Highlands
The ca. 570 Ma Catoctin volcanics, exposed in the Blue Ridge of northern Virginia, include metamorphosed rift-related basalts extruded during breakup of the supercontinent Rodinia. Field relationships, petrography, and geochemistry are used to decipher the stratigraphy for two areas of the volcanics, one at the base of the formation, and the other near its top. Geochemical characteristics of sequential flows can be explained by fractional crystallization of minerals commonly occurring in basalts. Intervening flows with slightly different geochemical features that cannot be explained by fractional crystallization from magma corresponding to an underlying flow, or by crustal contamination, most likely represent new pulses of magma. Positive Pb and negative Nb anomalies, coupled with ε Nd values of +1.5 to +4.5 and model ages that exceed crystallization ages by over 500 m.y., suggest that an enriched component was added to the mantle prior to melting. This component resulted from devolatilization of subducting sediments prior to assembly of Rodinia, likely during Grenville orogenic events. Stratigraphic control shows that lower lavas in the sequence contain more of the enriched component than upper flows.