Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Southern Europe
-
Italy
-
Sicily Italy
-
Lipari Islands
-
Stromboli (1)
-
-
Mount Etna (1)
-
-
-
-
-
Indian Ocean Islands
-
Mascarene Islands
-
Reunion
-
Piton de la Fournaise (1)
-
-
-
-
-
Primary terms
-
data processing (2)
-
Europe
-
Southern Europe
-
Italy
-
Sicily Italy
-
Lipari Islands
-
Stromboli (1)
-
-
Mount Etna (1)
-
-
-
-
-
geophysical methods (2)
-
government agencies (2)
-
Indian Ocean Islands
-
Mascarene Islands
-
Reunion
-
Piton de la Fournaise (1)
-
-
-
-
remote sensing (2)
-
volcanology (2)
-
GeoRef Categories
Book Series
Date
Availability
Abstract Using the NEODAAS-Dundee AVHRR receiving station (Scotland), NEODAAS-Plymouth can provide calibrated brightness temperature data to end users or interim users in near-real time. Between 2000 and 2009 these data were used to undertake volcano hot spot detection, reporting and time-average discharge rate dissemination during effusive crises at Mount Etna and Stromboli (Italy). Data were passed via FTP, within an hour of image generation, to the hot spot detection system maintained at Hawaii Institute of Geophysics and Planetology (HIGP, University of Hawaii at Manoa, Honolulu, USA). Final product generation and quality control were completed manually at HIGP once a day, so as to provide information to onsite monitoring agencies for their incorporation into daily reporting duties to Italian Civil Protection. We here describe the processing and dissemination chain, which was designed so as to provide timely, useable, quality-controlled and relevant information for ‘one voice’ reporting by the responsible monitoring agencies.
Simulating the thermorheological evolution of channel-contained lava: FLOWGO and its implementation in EXCEL
Abstract FLOWGO is a one-dimensional model that tracks the thermorheological evolution of lava flowing down a channel. The model does not spread the lava but, instead, follows a control volume as it descends a line of steepest descent centred on the channel axis. The model basis is the Jeffreys equation for Newtonian flow, modified for a Bingham fluid, and a series of heat loss equations. Adjustable relationships are used to calculate cooling, crystallization and down-channel increases in viscosity and yield strength, as well as the resultant decrease in velocity. Here we provide a guide that allows FLOWGO to be set up in Excel. In doing so, we show how the model can be executed using a slope profile derived from Google™ Earth. Model simplicity and ease of source-term input from Google™ Earth means that this exercise allows (i) easy access to the model, (ii) quick, global application and (iii) use in a teaching role. Output is tested using measurements made for the 2010 eruption of Piton de la Fournaise (La Réunion Island). The model is also set up for rapid syneruptive hazard assessment at Piton de la Fournaise, as we show using the example of the response to the June 2014 eruption.
Trends in activity at Pu’u ’O’o during 2001–2003: Insights from the continuous thermal record
Abstract A permanent thermal monitoring system deployed on the north rim of Pu'u 'O'o crater (Kilauea, Hawaii) provided an 811-day-long data-set spanning March 2001–December 2003. These data allowed us to characterize three emission styles from vents on the crater floor: lava flows, sustained degassing and gas-piston events. Lava flows were recorded as sudden increases in temperature followed by smooth and relatively long-lasting decreases as the lava cooled. Sustained degassing was associated with persistently high levels of thermal signal and was the most common signal type. Finally, gas-piston events were all preceded by marked reductions in temperature (due to diminished degassing) and were marked by abrupt increases (due to the arrival of a gas jet) followed by 50–300 second waning phases. Lava flow occurrence, maximum temperature recorded during degassing, gas-piston thermal amplitude, occurrence and waveform all showed coupled, systematic changes through time. This implies modification of a common source process, and may be a result of a slight change in the magma level beneath the crater so as to modify the conduit geometry/primary degassing pathways, and hence gas collection and release processes, as well as slug ascent dynamics.