The results of electron probe microanalysis of several rock-forming minerals by wavelength-dispersive spectrometry (WDS) and energy-dispersive spectrometry (EDS) are compared, and the metrological characteristics of both methods are studied. The measurements were made with the use of a JXA-8100 (JEOL) microanalyzer with five wavelength-dispersive spectrometers and a MIRA 3 LMU (Tescan) scanning electron microscope equipped with an INCA Energy 450 XMax 80 (Oxford Instruments) microanalysis system. Specimens with olivine, garnet, pyroxene, ilmenite, and Cr-spinel grains were analyzed.

The variation coefficients that characterize the repeatability of a single determination are found to be ~ 0.5% for WDS and ~ 0.9% for EDS in the compositional range of the main components (C > 10%). For minor components (1% < C < 10%), the variation coefficients are 1.4% and 3.0%, respectively, and for impurities (0.3% < C < 1%), 2.7% and 13%, respectively. For lower contents EDS is almost inapplicable. The ratio of the results obtained by the two methods is reproduced with high precision: For major components, the variation coefficient is 0.56%; for minor components, 1.7%; and even for impurities, it is ~ 8%. The magnitude of the bias is between 0.2 and 3.2 rel.%, which is acceptable.

The results show that the accuracies of WDS and EDS are similar for measuring major and minor components of rock-forming minerals. Energy-dispersive spectrometry is inferior to wavelength-dispersive spectrometry for impurities and is completely inapplicable for still lower contents. This method is easier to implement, and the results are available soon after switching on the instrument. Wavelength-dispersive spectrometry needs more time for preparation, but it ensures a precise high-efficiency large-scale analysis of samples of similar compositions, even when the element contents are lower than 1%.

You do not currently have access to this article.