Abstract

The paper is concerned with study of melt inclusions in minerals of ijolite xenoliths at Oldoinyo Lengai Volcano. Melt inclusions with different phase compositions occur in forsterite macrocrysts and in diopside, nepheline, fluorapatite, Ti-andradite, and Ti-magnetite crystals. Nepheline contains primary melt inclusions (silicate glass + gas-carbonate globule ± submicron globules ± sulfide globule ± daughter/trapped phases, represented by diopside, fluorapatite, Ti-andradite, and alumoåkermanite). The gas-carbonate globule consists of a gas bubble surrounded by a fine-grained aggregate of Na–Ca-carbonates (nyerereite and gregoryite). Fluorapatite contains primary carbonate-rich melt inclusions in the core, which consist of nyerereite, gregoryite, thenardite, witherite, fluorite, villiaumite, and other phases. Their mineral composition is similar to natrocarbonatites. Primary melt inclusions (glass + gas bubble ± daughter phases) are rare in diopside and Ti-andradite. Diopside and forsterite have trails of secondary carbonate-rich inclusions. Besides the above minerals, these inclusions contain halite, sylvite, neighborite, Na–Ca-phosphate, alkali sulfates, and other rare phases. In addition, diopside contains sulfide inclusions (pyrrhotite ± chalcopyrite ± djerfisherite ± galena ± pentlandite). The chemical compositions of silicate glasses in the melt inclusions vary widely. The glasses are characterized by high Na, K, and Fe contents and low Al contents. They have high total alkali contents (16–23 wt.% Na2O + K2O) and peralkalinity index [(Na + K)/Al] ranging from 1.1 to 7.6. The carbonate-rich inclusions in the ijolite minerals are enriched in Na, P, S, and Cl. The data obtained indicate that the parental melt in the intermediate chamber was heterogeneous and contained silicate, natrocarbonate, and sulfide components during the ijolite crystallization. According to heating experiments with melt inclusions, silicate–carbonate liquid immiscibility occurred at temperature over 580 °C.

You do not currently have access to this article.