A theoretical study has been performed to check the possibility of using ultrabroadband nanosecond electromagnetic pulses as a geosteering tool for horizontal drilling to estimate the distance to the oil-water contact (OWC) in a floating oil accumulation. The voltage of a microwave-bandwidth pulse at the dipole receiver of a downhole radar was modeled for the case of a horizontal borehole near OWC in a formation saturated with oil and water. Numerical solutions to the boundary problem formulated on the basis of the Maxwell equations were obtained with the Microwave Studio software (www.cst.com). The frequency-dependent dielectric constants of the layered saturated formation and the drilling fluid were assumed according to experimentally tested models. The modeling has demonstrated that nanosecond electromagnetic pulses arriving from a layered oil-water contact can in principle be acquired and the distance from the wellbore to the OWC median can be inferred from the respective time delays recorded by a downhole radar. Additionally, the possible dynamic range and accuracy of sensing have been estimated.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.