Based on geological data and the geochemical and isotopic (Sr, Nd) parameters of the Devonian volcanic associations of the Minusa basin, the main regularities of volcanism development are considered, the composition of magmatic sources is studied, and the geodynamic mechanisms of their involvement in rifting are reconstructed. The early stage of formation of the Minusa basin was characterized by intense volcanism, which resulted in differentiated and, more seldom, bimodal volcanic complexes composed of pyroclastic rocks and dolerite sills. At the late stage, only terrigenous deposits accumulated in the basin. It has been established that the basites are similar in composition and are intermediate in geochemical characteristics between intraplate rocks (OIB) and continent-marginal ones (IAB). The basites, like OIB, have high contents of all lithophile elements, which is typical of enriched mantle sources, and, like IAB, show negative anomalies of Nb, Ta, Ti, and, to a smaller extent, Rb, Th, Zr, and Hf, selective enrichment in Pb and Ba (and, sometimes, Sr), and a weak REE differentiation (7 < (La/Yb)N < 17). In contrast to the basins in other segments of the Devonian Altai–Sayan rift area, the igneous associations in the Minusa basin are characterized by a worse expressed geochemical inhomogeneity of rocks and lack of high-Ti (>2 wt.% TiO2) basites. The Sr and Nd isotope compositions of the Minusa basites deviate from the mantle rock series toward the compositions with high radiogenic-strontium and low REE contents. This points to the melting of a mantle substratum (PREMA-type) and carbonate-rich sedimentary rocks, which were probably assimilated by basaltic magma. The correlations between the contents of trace incompatible elements in rocks with SiO2 = 53–77 wt.% testify to the assimilation of crustal substrata by parental basaltic melts and the subsequent differentiation of contaminated magmas (AFC model). We propose a model for the formation of primary melts with the simultaneous participation of magmatic sources of two types: plume and fluid-saturated suprasubductional, localized beneath the active continental margin.

You do not currently have access to this article.