In the northwestern part of the Sharyzhalgai uplift of the Siberian craton (Bulun block), the earliest sialic crust (grey-gneiss complex) is composed of plagiogneisses, their migmatized varieties, and subordinate plagiogranitoids. The petrochemical, trace-element, and Sm-Nd isotope compositions of rocks were studied, and U-Pb dating of zircons (SHRIMP II) was performed. Plagiogneisses and plagiogranitoids of trondhjemite and, more seldom, tonalite compositions are predominant; their compositions are typical of rocks of Archean tonalite-trondhjemite-granodiorite (TTG) complexes (Al2O3 ≥ 15%, Mg# = 28–38, (La/Yb)n = 23–66, Sr/Y = 27–135, Eu/Eu* = 0.7–1.1). Plagiogneisses of meta-andesite-rhyodacite association are subordinate (SiO2 = 59–69%, (La/Yb)n = 7–32, Sr/Y = 11–24, Eu/Eu* = 0.5–0.7). Cathodoluminescent study of zircons revealed “magmatic cores” and metamorphic rims; most of the rims differ from the cores in U and Th contents and low or greatly varying Th/U ratios. In migmatized plagiogneisses of trondhjemite composition, two zircon generations of different morphologies have been recognized. The protoliths of the grey-gneiss complex rocks formed in the Paleoarchean as a result of two discrete magmatic events, at ∼3.3 and 3.25 Ga, and their metamorphism and migmatization took place at ∼3.2 Ga. The isotopic and geochemical features of rocks evidence that the primary melts were produced mainly through the melting of metabasic sources at different depths of the thickened crust. Plagiogneisses of trondhjemite composition apparently resulted from magma generation involving ancient sialic material.

You do not currently have access to this article.