A simple, reliable, and high-performance method has been proposed for direct determination of the isotopic composition of authigenic uranium in silica lacustrine sediments. The method is based on studying the kinetics of the selective extraction of authigenic uranium from sediments with weak solutions of ammonium hydrocarbonate followed by the ICP-MS analysis of the nuclides. To estimate the contamination of authigenic uranium by terrigenous one, the contents of 232Th and some other clastogenic elements in the extracts were measured simultaneously. The selectivity of extraction of authigenic uranium from the sediments treated with a 1% NH4HCO3 solution appeared to be no worse than 99%. The method was used to analyze the isotopic composition of authigenic uranium at several key horizons of a core dated before. The measurements directly prove that the 234U/238U values in Baikal water varied depending on climate, which contradicts the previous statements. The measured 234U/238U ratios in paleo-Baikal water match the values reconstructed from isotopic data for total uranium in the sediments on the supposition that the U/Th ratio is constant in the terrigenous part of the sediment. Direct experimental determination of total and authigenic nuclides in sediments enhances the potentiality of the method for absolute 234U-230Th dating of carbonate-barren lacustrine sediments, including those from Lake Baikal, within the intervals corresponding to the periods of glaciation, where the sediments contain a large fraction of terrigenous component. Given the fractions of terrigenous and authigenic uranium are accurately determined, we have an opportunity to study the variability of the sources of terrigenous matter and to refine the previous model for reconstructing the climate humidity in East Siberia.

You do not currently have access to this article.