Wall-rock metasomatites of the Kara gold deposit, a high-temperature medium-depth pneumatolytic-hydrothermal formation, have been studied. Gold mineralization is associated with the intrusion of granitoids of the Kara-Chacha massif (J3) and dikes of alkaline rocks (J3-K1), which include hybrid porphyries, “grorudites”, etc. They are characterized by telescoping of ores, expressed best of all on joints of ore-bearing sites.

The origin of the Kara-Chacha massif (Amudzhikan-Sretensk complex) is connected with pre-ore areal propylitization. The propylites demonstrate a zonal pattern relative to the massif and ore veins. A composite metasomatic column of propylitized rocks has been compiled.

The thickness of intensely altered wall rocks does not exceed 1.5–2.0 m and the structure of these zones is very heterogeneous. Syn-ore metasomatites are found in propylitized rocks. The major factor of syn-ore alteration of host rocks is the active behavior of alkaline elements. Albitization, silicification (in separate sites), tourmaline and pyrite alteration occur at the early quartz-pyrite-tourmaline stage of mineralization. Sodium is supplied at this stage. During the next quartz-actinolite-magnetite stage sodium and potassium are active. The host rocks demonstrate albitization, feldspar alteration, silicification, actinolitization, biotite alteration, and magnetite impregnation. Aegirine in veins is accompanied by occurrence of aegirine, alkaline amphibole, green biotite and, locally, quartz in host rocks. Potassium becomes more significant later, reaching the maximum activity at the quartz-sulfide stage. The development of quartz-arsenopyrite assemblage was accompanied by K-feldspatization, sericitization of host rocks, formation of green and tan biotites, and arsenopyrite impregnation. The formation of K-feldspar, sericitization, silicification, and sulfide impregnation are associated with quartz-sulfide ore. The final quartz-carbonate-polymetallic stage is accompanied by silicification and carbonate alteration of host rocks. Potassium becomes increasingly more active from outer zones of metasomatic columns to inner ones. The gold contents tend to increase with the potassium contribution in zones of hydrothermal alterations.

The propylite alteration and syn-ore changes become more intense veinward. It can indicate that hydrothermal solutions with dissolved minerals penetrated through the most reworked zones. However, hydrothermal solutions during propylite alteration and later syn-ore changes of host rocks not always penetrated through the same zones of weakness, such as tectonic dislocations, contacts of various rocks, etc. The rocks, comprising inner zones of the metasomatic column of propylites are quite often observed at a certain distance from veins and accompanied inner zones of metasomatic columns of later syn-ore metasomatites. They sometimes are not associated with ore veins. However, they are demonstrate later superimposed threads and separate impregnations of syn-ore minerals.

Abundant telescoping of mineralization and inheritance of mineralization stages complicate the structure of zones with syn-ore metasomatites. In the sites with telescoped mineralization the metasomatites contain minerals intrinsic to all stages of mineralization found at the deposit.

You do not currently have access to this article.