Natural Source Zone Depletion (NSZD) encompasses all processes that result in petroleum hydrocarbon light non-aqueous phase liquid (LNAPL) mass loss. Vertical gas transport between the subsurface and atmosphere is a key component of NSZD. Gas exchange with the atmosphere may be restricted at sites with ground cover which is typical for European fuel retail sites. This raises questions of whether, and to what extent, the generic NSZD conceptual model applies at these sites. Here, we present a study that evaluated how concrete and asphalt pavement affected NSZD processes and data interpretation for three NSZD assessment methods: soil gas concentration gradient, biogenic heat, and carbon dioxide traps.

All methods demonstrated that NSZD was occurring and NSZD rates were generally within the low-end of values reported in literature for unpaved sites. However, there was considerable variability in the rates, which highlights the need for careful examination of the conceptual site model and potential interferences for each method. The results demonstrate the viability of soil gas and temperature data collected from existing monitoring wells screened into the unsaturated zone without the need for additional, intrusive subsurface installations. The results also provide useful guidance for developing optimal long-term NSZD monitoring approaches, where necessary.

Scientific editing by Jonathan Smith; Gary Wealthall

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/)