As an extensively used gasoline additive, methyl tertiary butyl ether (MTBE) can leak into the subsurface, and this not only damages the ecological environment but also affects the geotechnical characteristics of the soil. In this study, the geotechnical properties of MTBE-contaminated soil, such as the basic physical properties of strength, compressibility, hydraulic conductivity, leachability, electrical resistivity and microstructural characteristics, are comprehensively investigated. The results show that the Atterberg limits consistently decrease with increasing MTBE content in the soil. As the MTBE content increases from 0 to 10%, the specific surface area of the soil decreases by 28%, the sand content increases by 22%, and the clay and silt contents decrease by 3 and 18%, respectively. The soil compression index, hydraulic conductivity, leached MTBE concentration and electrical resistivity increase, while the unconfined compressive strength (UCS) decreases, with increasing MTBE content. Microstructural analysis shows that increasing the MTBE content results in mineralogical alterations that decrease the illite and kaolinite content of the soil. The aggregation and flocculated structures can be detected by an increase in the number and size of inter-aggregate pores. In addition, the electrical resistivity of the contaminated soil is used to assess the geotechnical properties of the MTBE-contaminated soil based on well-established empirical relations.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.