Abstract

Cretaceous Mesaverde Group sandstones contain opening-mode fractures lined or filled by quartz and, locally, calcite cement. Fracture occlusion by quartz is controlled primarily by fracture size, age, and thermal history. Fractures occlusion by calcite is highly heterogeneous, with open and calcite-sealed fractures found at adjacent depths. In the Piceance and in other basins, processes that control the distribution of these calcite cements have been uncertain. Using pore and fracture cement petrography, fluid inclusions, and isotopic and elemental analysis, we show that host-rock calcite distribution and remobilization govern porosity degradation and occlusion of fractures >1 mm wide by calcite. Fluid inclusion analyses indicate calcite cement precipitation at 135 to 165°C. 87Sr/86Sr ratios of calcite and the presence of porous albite suggest detrital feldspar albitization released Ca2+ driving carbonate cement precipitation. In host rock, both albite and calcite content decreases with depth along with greater fracture porosity preservation. Although the cement sequence Fe-dolomite → ankerite → calcite is widespread, Fe-dolomite and ankerite occur as host-rock cements only, with detrital dolomite as preferred precipitation substrate. We find that rock mass calcite cement content correlates with fracture degradation and occlusion, and can be used to accurately predict where wide fractures are sealed or open.

This content is PDF only. Please click on the PDF icon to access.
You do not currently have access to this article.