The effective electrical conductivity of organic-rich mudrocks can be influenced by the presence of clay, pyrite, and thermally mature organic matter. In this paper, we investigate the impacts of conductivity, volumetric concentrations, and spatial distribution/connectivity of clay, pyrite, and kerogen networks on the effective conductivity of the rock and how this affects the assessment of water/hydrocarbon saturation. This quantification enables an understanding of when such components need to be considered in interpreting resistivity measurements in organic-rich mudrocks. We perform sensitivity analysis on the impacts of (a) thermal-maturity-dependent kerogen conductivity, (b) volumetric concentration/spatial distribution of kerogen, (c) conductivity and volumetric concentration/spatial distribution of pyrite, and (d) cation exchange capacities of various clay minerals and their concentration/spatial distribution on the effective conductivity of the rock. The sensitivity analysis showed that with increasing pyrite concentration, the effective conductivity of the rock increased. This increment became significant when the concentration of pyrite was above 2%. Lastly, we observed that thermally mature kerogen increased the conductivity of the rock, with a significant increment occurring when the kerogen conductivity was above 0.01 S m−1. Results confirmed that the incorporation of conductive rock components such as clay, pyrite, and kerogen into the electrical rock physics model improved the estimates of hydrocarbon reserves.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.