Many authors have proposed scenarios for mass extinctions that consist of multiple pulses or stages, but little work has been done on accounting for the Signor-Lipps effect in such extinction scenarios. Here we introduce a method for computing confidence intervals for the time or stratigraphic distance separating two extinction pulses in a pulsed extinction event, taking into account the incompleteness of the fossil record. We base our method on a flexible likelihood ratio test framework that is able to test whether the fossil record is consistent with any extinction scenario, whether simultaneous, pulsed, or otherwise. As an illustration, we apply our method to a data set on marine invertebrates from the Permo-Triassic boundary of Meishan, China. Using this data set, we show that the fossil record of ostracodes and that of brachiopods are each consistent with simultaneous extinction, and that these two extinction pulses are separated by 720,000 to 1.2 million years with 95% confidence. With appropriate data, our method could also be applied in other situations, such as tests of origination patterns, coordinated stasis, and recovery after a mass extinction.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.