In computational studies of the body mass and surface area of vertebrates, it is customary to assume that body cross-sections are approximately elliptical. However, a review of actual vertebrate cross-sections establishes that this assumption is not usually met. A new cross-sectional model using superellipses is therefore introduced, together with a scheme that allows estimates to be given with ranges. Tests of the new method, using geometrical shapes, miniature vertebrate models, and actual animals, show that the method has a high accuracy in body mass estimation. A new computer program to perform the computation is introduced. The application of the method to some Mesozoic marine reptiles suggests that the tuna-shaped ichthyosaur Stenopterygius probably had body masses comparable to those of average cetaceans of the same body length.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.