The environmental transformations that occurred during the Neogene had profound effects on spatiotemporal biodiversity patterns, yet the modulating role of traits (i.e., physiological, ecological, and life-history traits) remains little understood. We tested this idea using the Neogene fossil record of chondrichthyans along the temperate Pacific coast of South America (TPSA). Information for georeferenced occurrences and ecological and life-history information of 38 chondrichthyan fossil genera in 42 Neogene sites was collected. Global georeferenced records were used to estimate present-day biogeographic distributions of the genera and to characterize the range of oceanographic conditions in which each genus lives as a proxy of their realized niche. Biogeographic range shifts (Neogene–present) were evaluated at regional and local scales. The role of traits as drivers of different range dynamics was evaluated using random forest models. The magnitude and direction of biogeographic range shifts were different at both spatial scales. At a regional scale, 34% of genera contracted their ranges, disappearing from the TPSA. At a local scale, a similar proportion of genera expanded and contracted their southern endpoints of distribution. The models showed a high precision at both spatial scales of analyses, but the relative importance of predictor variables differed. At a regional scale, disappearing genera tended to have a higher tolerance to salinity, lower sea surface temperature (SST) range, and smaller body sizes. At a local scale, genera contracting their ranges tended to live at greater depths, tolerate lower levels of primary productivity, and show a reduced tolerance to higher and lower SST ranges. The magnitude and direction of the changes in the range distribution were scale dependent and variable across the genera. Hence, multiple environmental exogenous factors interacted with taxon traits during the Neogene, creating a mosaic of biogeographic dynamics.

You do not currently have access to this article.