Diet and body mass are highly important factors in mammalian ecology, and they have also proven to be powerful paleoecological indicators. Our previous research has proposed a new classification scheme for mammals with more dietary divisions that emphasizes the primary resource in a given diet. We analyzed a database summarizing the dietary preferences of 139 species of marsupial and placental terrestrial mammals (including 14 orders) and their average body masses in order to explore whether this new classification better highlights ecomorphological differences between species. Additionally, the dietary diversity of every species in the data set was quantified by applying the inverse Simpson index to stomach content percentages. We observed a decrease in maximum dietary diversity with increasing body mass. Having lower requirements for energy and nutrients per unit of body weight or ecological advantages such as larger home ranges allows larger mammals to feed on less nutritive feeding resources (i.e., structural plant material). Our results also suggest that body-size ranges are different across dietary specializations. Smaller mammals (<1 kg) are mainly insectivores, granivores, or mixed feeders, while bigger animals (>30 kg) are usually either carnivores or herbivores that feed specifically on grasses and leaves. The medium-size range (1–30 kg) is mostly composed of frugivorous species that inhabit tropical and subtropical rain forests. Thus, the near absence of medium-sized mammals in open environments such as savannas can be linked to the decreasing density of fruit trees needed to support a pure frugivorous diet year-round. In other words, seasonality of precipitation prevents species from specializing on a totally frugivorous diet. Our results suggest that this new classification scheme correlates well with body mass, one of the most studied morphological variables in paleoecology and ecomorphology. Therefore, the classification should serve as a useful basis for future paleoclimatological studies.

You do not currently have access to this article.