Understanding the evolution of a Bauplan starts with discriminating phylogenetic signal from adaptation and the latter from exaptation in the observed biodiversity. Whether traits have predated, accompanied, or followed evolution of particular functions is the basic inference to establish the type of explanations required to determine morphological evolution. To accomplish this, we focus in a particular group of vertebrates, the anurans. Frogs and toads have a unique Bauplan among vertebrates, with a set of postcranial features that have been considered adaptations to jumping locomotion since their evolutionary origin. This interpretation is frequently stated but rarely tested in scientific literature. We test this assumption reconstructing the locomotor capabilities of the earliest known salientian, Triadobatrachus massinoti. This extinct taxon exhibits a mosaic of features that have traditionally been considered as representing an intermediate stage in the evolution of the anuran Bauplan, some of which were also linked to jumping skills. We considered T. massinoti in an explicit evolutionary framework by means of multivariate analyses and comparative phylogenetic methods. We used length measurements of major limb bones of 188 extant limbed amphibians (frogs and salamanders) and lizards as a morphological proxy of observed locomotor behavior. Our findings show that limb data correlate with locomotion, regardless of phylogenetic relatedness, and indicate that salamander-like lateral undulatory movements were the main mode of locomotion of T. massinoti. These results contrast with recent hypotheses and indicate that derived postcranial features that T. massinoti shared with anurans might have been later co-opted as exaptations in jumping frogs.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.