The geographic distribution of brachiopod genus occurrences over the Phanerozoic shows that secular declines in origination and extinction rates were paralleled by increases in invasion and extirpation rates. Origination and extinction rates declined in two phases, the first from the Cambrian to latest Permian Periods and the second from the latest Permian Period to the present, which were accompanied by concomitant increases in invasion and extirpation rates. In addition to the temporal correlation, an inverse correlation was also weakly evident among time-averaged latitudinal gradients of rates. Compared with faunas at higher latitudes, low-latitude faunas experienced higher origination and extinction rates, and lower invasion and extirpation rates. We suggest that progressive increases in migration ability lowered origination and extinction rates because species that were better equipped to track a preferred habitat, for example, by the ability to disperse larvae over large distances, were less likely to evolve or become extinct in response to local environmental changes. The two phases were separated by the end-Permian mass extinction, which reset to high levels the origination and extinction rates of a taxonomically and ecologically altered global brachiopod fauna. Our data also allow us to quantify the relative contributions of origination, extinction, invasion, and extirpation to regional diversity (quantified as 10° latitudinal zones) more generally. Overall, invasion and extirpation explained slightly more variation in diversity than in situ origination and extinction. The four variables usually occurred in combinations that maintained rather than altered the shape of the latitudinal diversity gradient. For most of the Phanerozoic Eon, the gradient was not the product of continuous renewal, but rather existed as a holdover from a previous interval.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.