Abstract

Ecological niche modeling (ENM) is a quantitative approach to predict species’ abiotic requirements. It is a correlative technique, requiring geographically explicit information on species occurrences and the suites of environmental conditions experienced at each occurrence point. The output of these models is a set of environmental suitability rules that can be projected geographically and through time to test biogeographic, ecologic, and evolutionary hypotheses. Although developed by biologists and used extensively in the modern, ENM is in its early stages of application to the deep-time fossil record (hence PaleoENM). In part its limited use in the fossil record thus far reflects the methodological challenge of constructing paleoenvironmental layers needed for PaleoENM analysis, whereas in the modern these layers are available from large public databases (e.g., WorldClim). This paper provides a contextual and methodological framework for appropriately applying PaleoENM, including best practices for developing species occurrence and paleoenvironmental data sets for PaleoENM analyses.

You do not currently have access to this article.