We review and synthesize multiple biotic and abiotic proxies for marine nutrient and food availability, primary productivity, and food quality (stoichiometry) and propose what their relationships may have been to macroevolutionary processes, especially speciation. This review confirms earlier suggestions that there has been an overall increase in marine primary productivity over the Phanerozoic, but indicates that the increase has been irregular and that present levels may not be the peak. We integrate these indicators into a new estimate of relative primary productivity in the global ocean through the Phanerozoic. We then combine multiple, frequently conflicting ecological-evolutionary hypotheses into a general model for how primary production may affect speciation over geological time scales. This model, an elaboration and extension of the “speciation cycle” previously proposed by Grant and Grant, attempts to explain why an increase in food supply sometimes is associated with decreased diversity, and at other times with increased diversification. We propose some simple tests for the application of this model to the fossil record.

You do not currently have access to this article.