Abstract

We documented changes in the relative abundance of bivalve genera and functional groups in the southwest Caribbean over the past 11 Myr to determine their response to oceanographic changes associated with the closure of the Central American Seaway ca. 3.5 Ma. Quantitative bulk samples from 29 localities yielded 106,000 specimens in 145 genera. All genera were assigned to functional groups based on diet, relationship to the substrate, and mobility. Ordinations of assemblages based on quantitative data for functional groups demonstrated strong shifts in community structure, with a stark contrast between assemblages older than 5 Ma and those younger than 3.5 Ma. These changes are primarily due to an increase in the abundance of attached epifaunal bivalves (e.g., Chama, Arcopsis, and Barbatia) and a decrease in infaunal bivalves (e.g., Varicorbula and Caryocorbula). Taxa associated with seagrasses, including deposit-feeding and chemosymbiotic bivalves (e.g., Lucina), also increased in relative abundance compared to suspension feeders. The composition of bivalve assemblages is correlated with the carbonate content of sediments and the percentage of skeletal biomass that is coral. Our results strongly support the hypothesis that increases in the extent of coral reefs and Thalassia communities were important drivers of biologic turnover in Neogene Caribbean benthic communities.

You do not currently have access to this article.